Urban Freight Analytics Big Data, Models, and Artificial Intelligence

Eiichi Taniguchi Russell G. Thompson Ali G. Qureshi

CRC Press is an imprint of the Taylor & Francis Group, an informa business

Contents

•

	Pref	ace	xi
	Abo	ut the Authors	xv
PART I Methods			
1	Intro	oduction	3
	1.1	Concepts of city logistics 3	
	1.2	Use of emerging technologies 4	
		1.2.1 Overview 4	
		1.2.2 ICT, ITS, IoT, big data, and AI 5	
		1.2.3 Autonomous vehicles and robots	
		for last-mile delivery 6	
	1.3	Collaboration and coordination among	
		stakeholders 7	
	1.4	Integrated platform for city logistics 8	
	1.5 Modelling city logistics 10		
	1.6	Conclusions 12	
	Refe	rrences 12	
2	Data	a collection and analyses	17
	2.1	Data collection using IoT, ICT, and ITS 17	
		2.1.1 VICS data 18	
		2.1.2 Probe data 19	
	2.2	Big data analyses in urban freight 21	
	2.3	Data sharing among stakeholders 21	
		2.3.1 Overview 21	
		2.3.2 Examples of data sharing 22	

2.4

2.3.3 Discussion 232.3.4 Blockchain 24Conclusions 25

References 25

3 Geographic information systems and spatial analysis

- 3.1 Introduction 27
- 3.2 Global position systems 27
 - 3.2.1 Introduction 27
 - 3.2.2 Vehicle routes 27
 - 3.2.3 Road network performance 29
 - 3.2.4 Freight vehicle demand 30
- 3.3 Geographic information systems (GIS) 30
 - 3.3.1 Introduction 30
 - 3.3.2 Overlaying 30
 - 3.3.3 HazMat vehicle route planning 33
- 3.4 Data and software 34
- 3.5 Conclusions 35

References 35

4 Optimisation

- 4.1 Introduction 39
- 4.2 Vehicle routing problem 39
 - 4.2.1 The vehicle routing problem with time windows 40
 - 4.2.2 Dynamic VRPs 42
 - 4.2.3 Stochastic VRPs 43
 - 4.2.4 Green VRPs 44
 - 4.2.5 Heterogeneous vehicle routing problem 45
- 4.3 Location-routing problem 46
- 4.4 Multi-echelon routing and location-routing models 47
- 4.5 Hub location-routing problem 49
- 4.6 Solution techniques for VRPTW 49
 4.6.1 Heuristics solution approaches 50
 - 4.6.2 Exact solution approaches 51
- 4.7 Conclusions 53

References 53

5 Multi-agent simulation with machine learning

- 5.1 Introduction 61
- 5.2 Multi-agent modelling 61

39

61

5.3 Decision support systems 635.4 Conclusions 64References 64

6 Reliability and resilience

- 6.1 Introduction 67
- 6.2 Travel time reliability in city logistics 69
- 6.3 Risks in hazardous materials transport 70
- 6.4 Resilience in disasters 72
- 6.5 Conclusions 72

References 73

7 Evaluation

- 7.1 Introduction 75
- 7.2 Networks 76
 - 7.2.1 Retail swap networks 77
 - 7.2.2 Collaborative urban freight networks 78
 - 7.2.3 Urban shuttle 79
 - 7.2.4 Parcel lockers for transferring goods 80
- 7.3 Financial analysis 80
 - 7.3.1 Electric freight vehicles 80
 - 7.3.2 Software 84
 - 7.3.3 Urban consolidation centres 84
- 7.4 Multi-criteria analysis (MCA) 85
 - 7.4.1 Radar plot 85
 - 7.4.2 Priority weightings 85
 - 7.4.3 Promethee 86
 - 7.4.4 Combined methods 87
 - 7.4.5 Knowledge management 88
- 7.5 Multi-actor multi-criteria analysis 88
- 7.6 Multi-objective optimisation 89
- 7.7 Conclusions 90

References 91

PART 2 Applications

93

95

8 /	Autonomous	vehicles	and	robots
-----	------------	----------	-----	--------

8.1 Introduction 95

- 8.2 Types of un-manned vehicles in freight 95
 - 8.2.1 Autonomous delivery robots 95
 - 8.2.2 Un-manned aerial vehicles 97
- 8.3 Issues related with ADVs 98
 - 8.3.1 Capacity and range 98
 - 8.3.2 Regulations 98
 - 8.3.3 Acceptability 99
- 8.4 Integration of robots and drones in urban freight delivery systems 101
- 8.5 Indoor logistics 103
- 8.6 Conclusions 103

References 104

9 Access management and pricing

- 9.1 Introduction 109
- 9.2 Unloading bays 109
 - 9.2.1 Monitoring usage 109
 - 9.2.2 Models 111
- 9.3 Loading docks 113
 - 9.3.1 Surveys 113
 - 9.3.2 Capacity modelling 114
 - 9.3.3 Loading dock booking systems 115
- 9.4 Access control schemes 119
 - 9.4.1 Time access restrictions 121
 - 9.4.2 Vehicle restrictions 121
 - 9.4.3 Low-emission zones/environmental zones (engine restrictions) 122
 - 9.4.4 Vehicle load factor controls 123
- 9.5 Tolls 123
- 9.6 Road pricing 124
- 9.7 Conclusions 125
- References 125

10 Environmental sustainability

- 10.1 Introduction 129
- 10.2 Joint delivery systems with urban consolidation centres (UCC) 130
- 10.3 Cargo bikes 133
- 10.4 Conclusions 134

References 134

129

11	Disru	uption of networks	137	
	11.1	Introduction 137		
	11.2	Humanitarian logistics in disasters 138		
		11.2.1 Routing problem 138		
		11.2.2 Location-routing problem 139		
	11.3	Recovery process 143		
		11.3.1 Debris removal 143		
		11.3.2 Network recovery 145		
	11.4	Logistics in pandemic times (COVID-19) 146		
	11.5	Conclusions 147		
	References 147			
12	Futu	re directions	151	
	12.1	Introduction 151		
	12.2	Hyperconnected City Logistics 152		
	12.3	Emerging technologies 154		
		12.3.1 Connected and autonomous vehicles 154		
		12.3.2 Electric vehicles 155		
		12.3.3 Digital twin (DT) 155		
		12.3.4 Data 156		
	12.4 Integrated platform 156			
		12.4.1 Platform characteristics 156		
		12.4.2 Agent-based simulation models (ABSM) 159		
		12.4.3 Gamification 160		
		12.4.4 Optimisation 161		
		12.4.5 Machine learning (ML) 163		
	12.5	Conclusions 163		
	Refer	ences 164		
	T 1			

Index