Contents

Preface to First Edition
Preface to the Second Edition

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Our Hunger for Energy</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Energy Supply – Yesterday and Today</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1</td>
<td>From the French Revolution to the Early Twentieth Century</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2</td>
<td>The Era of Black Gold</td>
<td>4</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Natural Gas – The Newest Fossil Energy Source</td>
<td>7</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Nuclear Power – Split Energy</td>
<td>8</td>
</tr>
<tr>
<td>1.1.5</td>
<td>The Century of Fossil Energy</td>
<td>12</td>
</tr>
<tr>
<td>1.1.6</td>
<td>The Renewables Century</td>
<td>13</td>
</tr>
<tr>
<td>1.3</td>
<td>'Anyway' Energy</td>
<td>17</td>
</tr>
<tr>
<td>1.4</td>
<td>Energy Reserves – Wealth for a Time</td>
<td>20</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Non-Conventional Reserves – Prolongation of the Oil Age</td>
<td>21</td>
</tr>
<tr>
<td>1.4.2</td>
<td>An End in Sight</td>
<td>22</td>
</tr>
<tr>
<td>1.4.3</td>
<td>The End of Fission</td>
<td>24</td>
</tr>
<tr>
<td>1.5</td>
<td>High Energy Prices – the Key to Climate Protection</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>The Climate Before the Collapse</td>
<td>27</td>
</tr>
<tr>
<td>2.1</td>
<td>It Is Getting Warm – Climate Changes Today</td>
<td>27</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Accelerated Ice Melt</td>
<td>27</td>
</tr>
<tr>
<td>2.1.2</td>
<td>More Frequent Natural Catastrophes</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>The Guilty Parties – Causes of Climate Change</td>
<td>33</td>
</tr>
<tr>
<td>2.2.1</td>
<td>The Greenhouse Effect</td>
<td>33</td>
</tr>
<tr>
<td>2.2.2</td>
<td>The Prime Suspect: Carbon Dioxide</td>
<td>34</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Other Culprits</td>
<td>38</td>
</tr>
<tr>
<td>2.3</td>
<td>Outlook and Recommendations – What Lies Ahead?</td>
<td>40</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Will it Be Bitterly Cold in Europe?</td>
<td>43</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Recommendations for Effective Climate Protection</td>
<td>45</td>
</tr>
<tr>
<td>2.4</td>
<td>A Difficult Birth – Politics and Climate Change</td>
<td>48</td>
</tr>
<tr>
<td>2.4.1</td>
<td>German Climate Policy</td>
<td>48</td>
</tr>
<tr>
<td>2.4.2</td>
<td>International Climate Policy</td>
<td>49</td>
</tr>
<tr>
<td>2.5</td>
<td>Self-Help Climate Protection</td>
<td>51</td>
</tr>
</tbody>
</table>
3 From Wasting Energy to Saving Energy and Reducing Carbon Dioxide 53
3.1 Inefficiency 53
3.2 Personal Energy Needs – Savings at Home 56
3.2.1 Domestic Electricity – Money Wasted 56
3.2.2 Heat – Surviving the Winter with Almost No Heating 60
3.2.3 Transport – Getting Somewhere Using Less Energy 64
3.3 Industry and Commerce – Everyone Else is to Blame 66
3.4 Your Personal Carbon Dioxide Balance 67
3.4.1 Emissions Caused Directly by One's Own Activities 67
3.4.2 Indirect Emissions 68
3.4.3 Total Emissions 71
3.5 The Sale of Ecological Indulgences 71

4 'Energiewende' (Energy Transition) – The Way to a Better Future? 75
4.1 Coal and Nuclear Power Plants – Crutch Instead of Bridge 75
4.1.1 Energy and Automotive Companies Have Bet on the Wrong Horse 76
4.1.2 Lignite – A Climate Killer Made in Germany 78
4.1.3 Carbon Dioxide Sequestration – Out of Sight, Out of Mind 81
4.1.4 Nuclear Power Comeback Was Not a Radiant Success 83
4.2 Efficiency and CHP – A Good Double for Starters 84
4.2.1 Combined Heat and Power – Using Fuel Twice 84
4.2.2 Saving Energy – Achieving More with Less 85
4.3 Renewables – Energy Without End 87
4.4 Germany Is Becoming Renewable 88
4.4.1 All Sectors Are Important 89
4.4.2 Energy Transition in the Heat Sector 90
4.4.3 Energy Transition in the Transport Sector 93
4.4.4 Energy Transition in the Electricity Sector 94
4.4.5 Reliable Supply Using Renewables 97
4.4.6 Decentralized Instead of Centralized – Fewer Power Lines 100
4.5 Not So Expensive – The Myth of Unaffordability 101
4.6 Energy Revolution Instead of Half-Hearted Energy Transition 103
4.6.1 German Energy Policy – In the Shadow of Corporations 103
4.6.2 Energy Transition in the Hands of the Citizens – A Revolution Is Imminent 104

5 Photovoltaics – Energy from Sand 107
5.1 Structure and Function 107
5.1.1 Electrons, Holes, and Space-Charge Regions 107
5.1.2 Efficiency, Characteristics, and MPP 109
5.2 Production of Solar Cells – From Sand to Cell 111
5.2.1 Silicon Solar Cells – Power from Sand 111
5.2.2 From Cell to Module 113
5.2.3 Thin-Film Solar Cells 114
5.3 PV Systems – Grids and Islands 115
5.3.1 Sun Islands 115
5.3.2 Sun in the Grid 118
5.3.3 More Solar Independence 121
5.4 Planning and Design 124
5.4.1 Designing Stand-Alone Systems 124
5.4.2 Designing Grid-Connected Systems 126
5.4.3 Planned Autonomy 130
5.5 Economics 131
5.5.1 What Does It Cost? 131
5.5.2 Funding Programmes 132
5.5.3 Avoiding VAT 134
5.6 Ecology 135
5.7 PV Markets 136
5.8 Outlook and Development Potential 137

6 Solar Thermal Systems – Year-Round Heating from the Sun 141
6.1 Structure and Functionality 142
6.2 Solar Collectors – Collecting the Sun 145
6.2.1 Swimming Pool Absorbers 145
6.2.2 Flat-Plate Collectors 145
6.2.3 Air-Based Collectors 146
6.2.4 Vacuum-Tube Collectors 147
6.3 Solar Thermal Systems 149
6.3.1 Hot Water from the Sun 149
6.3.2 Heating with the Sun 152
6.3.3 Solar Communities 154
6.3.4 Cooling with the Sun 155
6.3.5 Swimming with the Sun 156
6.3.6 Cooking with the Sun 157
6.4 Planning and Design 158
6.4.1 Solar Thermal Heating of Domestic Hot Water 158
6.4.2 Solar Thermal Auxiliary Heating 161
6.5 Economics 163
6.5.1 When Does It Pay off? 163
6.5.2 Funding Programmes 163
6.6 Ecology 164
6.7 Solar Thermal Markets 165
6.8 Outlook and Development Potential 167

7 Solar Power Plants – Even More Power from the Sun 169
7.1 Focusing on the Sun 169
7.2 Solar Power Plants 171
7.2.1 Parabolic Trough Power Plants 171
7.2.2 Solar Tower Power Plants 175
7.2.3 Dish-Stirling Power Plants 177
7.2.4 Solar Chimney Power Plants 178
7.2.5 Concentrating Photovoltaic Power Plants 179
7.2.6 Solar Chemistry 179
7.3 Planning and Design 180
7.3.1 Concentrating Solar Thermal Power Plants 181
7.3.2 Solar Chimney Power Plants 182
7.3.3 Concentrating Photovoltaic Power Plants 182
7.4 Economics 182
7.5 Ecology 183
7.6 Solar Power Plant Markets 184
7.7 Outlook and Development Potential 185

8 Wind Power Systems – Electricity from Thin Air 189
8.1 Gone with the Wind – Where the Wind Comes From 190
8.2 Utilizing Wind 192
8.3 Wind Turbines and Windfarms 196
8.3.1 Wind Chargers 196
8.3.2 Large, Grid-Connected Wind Turbines 197
8.3.3 Small Wind Turbines 201
8.3.4 Windfarms 202
8.3.5 Offshore Windfarms 203
8.4 Planning and Design 206
8.5 Economics 208
8.6 Ecology 210
8.7 Wind Power Markets 212
8.8 Outlook and Development Potential 213

9 Hydropower Plants – Wet Electricity 215
9.1 Tapping into the Water Cycle 215
9.2 Water Turbines 217
9.3 Hydropower Plants 220
9.3.1 Run-of-River Hydropower Plants 220
9.3.2 Storage Power Plants 222
9.3.3 Pumped-storage Hydropower Plants 222
9.3.4 Tidal Power Plants 224
9.3.5 Wave Power Plants 225
9.3.6 Ocean Current Power Plants 226
9.4 Planning and Design 227
9.5 Economics 228
9.6 Ecology 228
9.7 Hydropower Markets 230
9.8 Outlook and Development Potential 231

10 Geothermal Energy – Power from the Deep 233
10.1 Tapping into the Earth's Heat 233
10.2 Geothermal Heat and Power Plants 237
10.2.1 Geothermal Heat Plants 237
10.2.2 Geothermal Power Plants 238
10.2.3 Geothermal HDR Power Plants 240
10.3 Planning and Design 241
Contents

10.4 Economics 242
10.5 Ecology 242
10.6 Geothermal Markets 243
10.7 Outlook and Development Potential 244

11 Heat Pumps – From Cold to Hot 245
11.1 Heat Sources for Low-Temperature Heat 245
11.2 Operating Principle of Heat Pumps 247
11.2.1 Compression Heat Pumps 248
11.2.2 Absorption Heat Pumps and Adsorption Heat Pumps 249
11.3 Planning and Design 250
11.4 Economics 253
11.5 Ecology 254
11.6 Heat Pump Markets 257
11.7 Outlook and Development Potential 257

12 Biomass—Energy from Nature 259
12.1 Origins and Use of Biomass 260
12.2 Biomass Heating 263
12.2.1 Wood as a Fuel 263
12.2.2 Open Fires and Woodburning Stoves 266
12.2.3 Log Boilers 266
12.2.4 Wood Pellet Heating 268
12.3 Biomass Heat and Power Plants 269
12.4 Biofuels 271
12.4.1 Bio-oil 271
12.4.2 Biodiesel 272
12.4.3 Bioethanol 273
12.4.4 BtL Fuels 274
12.4.5 Biogas 275
12.5 Planning and Design 276
12.5.1 Log Boilers 276
12.5.2 Wood Pellet Heating 277
12.6 Economics 279
12.7 Ecology 280
12.7.1 Solid Fuels 281
12.7.2 Biofuels 282
12.8 Biomass Markets 282
12.9 Outlook and Development Potential 284

13 Renewable Gas and Fuel Cells 285
13.1 Hydrogen as an Energy Source 287
13.2 Methanation 289
13.3 Transport and Storage of Renewable Gas 290
13.3.1 Transport and Storage of Hydrogen 290
13.3.2 Transport and Storage of Renewable Methane 291
13.4 Fuel Cells: Bearers of Hope 293
13.5 Economics 296
13.6 Ecology 297
13.7 Markets, Outlook, and Development Potential 298

14 Sunny Prospects – Examples of Sustainable Energy Supply 301
14.1 Climate-Compatible Living 301
14.1.1 Carbon-Neutral Standard Prefabricated Houses 301
14.1.2 Plus-Energy Solar House 302
14.1.3 Plus-Energy Housing Estate 303
14.1.4 Heating Only with the Sun 304
14.1.5 Zero Heating Costs After Redevelopment 305
14.2 Working and Producing in a Climate-friendly Manner 306
14.2.1 Offices and Shops in the 'Sonnenschiff' 306
14.2.2 Zero-Emissions Factory 306
14.2.3 Carbon-free Heavy Equipment Factory 307
14.2.4 Plus-Energy Head Office 307
14.3 Climate-Compatible Driving 309
14.3.1 Travelling Around the World in a Solar Car 309
14.3.2 Across Australia in 33 hours 310
14.3.3 Emission-free Deliveries 311
14.3.4 Electric Cars for All 312
14.4 Climate-Compatible Travel by Water or Air 313
14.4.1 Advanced Sailing 313
14.4.2 Solar Ferry on Lake Constance 314
14.4.3 World Altitude Record with a Solar Aeroplane 314
14.4.4 Flying Around the World in a Solar Plane 315
14.4.5 Flying for Solar Kitchens 316
14.5 Everything Becomes Renewable 317
14.5.1 A Village Becomes Independent 317
14.5.2 Hybrid Power Plant for Secure Renewable Supply 318
14.6 Everything will Turn Out Fine 319

A Appendix 321
A.1 Energy Units and Prefixes 321
A.2 Geographic Coordinates of Power Plants 322
A.3 Further Reading 325

References 327
Index 331