Exercises in Probability

A Guided Tour from Measure Theory to Random Processes, via Conditioning

Second Edition
Loi'c Chaumont
LAREMA, Universite d'Angers
Marc Yor
IJPMA, Universite Pierre et Marie Curie (Paris VI)

Contents

Preface to the second edition XV
Preface to the first edition xvii
Some frequently used notations xix
1 Measure theory and probability 1
1.1 Some traps concerning the union of a-fields 1
1.2 Sets which do not belong in a strong sense, to a er-field 2
1.3 Some criteria for uniform integrability 3
1.4 When does weak convergence imply the convergence of expectations? 4
1.5 Conditional expectation and the Monotone Class Theorem 5
1.6 //-convergence of conditional expectations 5
1.7 Measure preserving transformations 6
1.8 Ergodic transformations 6
1.9 Invariant er-fields 7
1.10 Extremal solutions of (general) moments problems 8
1.11 The log normal distribution is moments indeterminate 9
1.12 Conditional expectations and equality in law 10
1.13 Simplifiable random variables 11
1.14 Mellin transform and simplification 12
1.15 There exists no fractional covering of the real line 12
Solutions for Chapter 1 14
2 Independence and conditioning 27
2.1 Independence does not imply measurability with respect to an independent complement 28
2.2 Complement to Exercise 2.1: further statements of independence versus measurability 29
2.3 Independence and mutual absolute continuity 29
2.4 Size-biased sampling and conditional laws 30
2.5 Think twice before exchanging the order of taking the supremum and intersection of cr-fields! 31
2.6 Exchangeability and conditional independence: de Finetti's theorem 32
2.7 On exchangeable cr-fields 33
2.8 Too much independence implies constancy 34
2.9 A double paradoxical inequality 35
2.10 Euler's formula for primes and probability 36
2.11 The probability, for integers, of being relatively prime 37
2.12 Completely independent multiplicative sequences of U-valued random variables 38
2.13 Bernoulli random walks considered at some stopping time 39
2.14 cosh, sinh, the Fourier transform and conditional independence 40
2.15 cosh, sinh, and the Laplace transform 41
2.16 Conditioning and changes of probabilities 42
2.17 Radon-Nikodym density and the Acceptance-Rejection Method of von Neumann 42
2.18 Negligible sets and conditioning 43
2.19 Gamma laws and conditioning 44
2.20 Random variables with independent fractional and integer parts 45
2.21 Two characterizations of the simple random walk 46
Solutions for Chapter 2 48
3 Gaussian variables 75
3.1 Constructing Gaussian variables from, but not belonging to, a Gaussian space 76
3.2 A complement to Exercise 3.1 76
3.3 Gaussian vectors and orthogonal projections 77
3.4 On the negative moments of norms of Gaussian vectors 77
3.5 Quadratic functional of Gaussian vectors and continued fractions 78
3.6 Orthogonal but non-independent Gaussian variables 81
3.7 Isotropy property of multidimensional Gaussian laws 81
3.8 The Gaussian distribution and matrix transposition 82
3.9 A law whose n-samples are preserved by every orthogonal transformation is Gaussian 82
3.10 Non-canonical representation of Gaussian random walks 83
3.11 Concentration inequality for Gaussian vectors 85
3.12 Determining a jointly Gaussian distribution from its conditional marginals 86
3.13 Gaussian integration by parts 86
3.14 Correlation polynomials 87
Solutions for Chapter 3 89
4 Distributional computations 103
4.1 Hermite polynomials and Gaussian variables 104
4.2 The beta-gamma algebra and Poincare's Lemma 105
4.3 An identity in law between reciprocals of gamma variables 108
4.4 The Gamma process and its associated Dirichlet processes 109
4.5 Gamma variables and Gauss multiplication formulae 110
4.6 The beta-gamma algebra and convergence in law I11
4.7 Beta-gamma variables and changes of probability measures 112
4.8 Exponential variables and powers of Gaussian variables 113
4.9 Mixtures of exponential distributions 113
4.10 Some computations related to the lack of memory property of the exponential law 114
4.11 Some identities in law between Gaussian and exponential variables 115
4.12 Some functions which preserve the Cauchy law 116
4.13 Uniform laws on the circle 117
4.14 Fractional parts of random variables and the uniform law 117
4.15 Non-infinite divisibility and signed Levy-Khintchine representation 118
4.16 Trigonometric formulae and probability 119
4.17 A multidimensional version of the Cauchy distribution 119
4.18 Some properties of the Gauss transform 121
4.19 Unilateral stable distributions (1) 123
4.20 Unilateral stable distributions (2) 124
4.21 Unilateral stable distributions (3) 125
4.22 A probabilistic translation of Selberg's integral formulae 128
4.23 Mellin and Stieltjes transforms of stable variables 128
4.24 Solving certain moment problems via simplification 130
Solutions for Chapter 4 132
5 Convergence of random variables 163
5.1 Around Scheffe's lemma 164
5.2 Convergence of sum of squares of independent Gaussian variables 164
5.3 Convergence of moments and convergence in law 164
5.4 Borel test functions and convergence in law 165
5.5 Convergence in law of the normalized maximum of Cauchy variables 165
5.6 Large deviations for the maximum of Gaussian vectors 166
5.7 A logarithmic normalization 166
5.8 A $/ / n \log n$ normalization 167
5.9 The Central Limit Theorem involves convergence in law, not in probability 168
5.10 Changes of probabilities and the Central Limit Theorem 168
5.11 Convergence in law of stable(/i) variables, as fi - » 0 169
5.12 Finite-dimensional convergence in law towards Brownian motion 170
5.13 The empirical process and the Brownian bridge 171
5.14 The functional law of large numbers 172
5.15 The Poisson process and the Brownian motion 172
5.16 Brownian bridges converging in law to Brownian motions 173
5.17 An almost sure convergence result for sums of stable random variables 174
Solutions for Chapter 5 176
6 Random processes 191
6.1 Jeulin's lemma deals with the absolute convergence of integrals of random processes 193
6.2 Functions of Brownian motion as solutions to SDEs; the example of $<p(x)=\sinh (: r)$ 195
6.3 Bougerol's identity and some Bessel variants 196
6.4 Doleans Dade exponentials and the Maruyama-Girsanov-Van Schuppen-Wong theorem revisited 197
6.5 The range process of Brownian motion 199
6.6 Symmetric Levy processes reflected at their minimum and maximum;
E. Csaki's formulae for the ratio of Brownian extremes 200
6.7 Infinite divisibility with respect to time 201
6.8 A toy example for Westwater's renormalization 202
6.9 Some asymptotic laws of planar Brownian motion 205
6.10 Windings of the three-dimensional Brownian motion around a line 206
6.11 Cyclic exchangeability property and uniform law related to the Brownian bridge 207
6.12 Local time and hitting time distributions for the Brownian bridge 208
6.13 Partial absolute continuity of the Brownian bridge distribution with respect to the Brownian distribution 210
6.14 A Brownian interpretation of the duplication formula for the gamma function 211
6.15 Some deterministic time-changes of Brownian motion 212
6.16 A new path construction of Brownian and Bessel bridges 213
6.17 Random scaling of the Brownian bridge 214
6.18 Time-inversion and quadratic functionals of Brownian motion; Levy's stochastic area formula 215
6.19 Quadratic variation and local time of semimartingales 216
6.20 Geometric Brownian motion 217
6.21 0 -self similar processes and conditional expectation 218
6.22 A Taylor formula for semimartingales; Markov martingales and iterated infinitesimal generators 219
6.23 A remark of D. Williams: the optional stopping theorem may hold for certain "non-stopping times" 220
6.24 Stochastic affine processes, also known as "Harnesses" 221
6.25 More on harnesses 224
6.26 A martingale "in the mean over time" is a martingale 224
6.27 A reinforcement of Exercise 6.26 225
6.28 Some past-and-future Brownian martingales 225
6.29 Additive and multiplicative martingale decompositions of Brownian motion 226
Solutions for Chapter 6 229
Where is the notion N discussed? 268
Final suggestions: how to go further? 269
References 270
Index 278

