Active Coatings for Smart Textiles

Edited by

Jinlian Hu
Contents

List of contributors xi
Woodhead Publishing Series in Textiles xiii

1 Introduction to active coatings for smart textiles 1

J.L. Hu

1.1 Introduction 1
1.2 Functions and applications of active coating 3
1.3 Development of smart materials for active coating 4
1.4 Development of processing technologies for active coating 5
1.5 Outline of the book 6
References 7

Part One Types of active coatings 9

2 Memory polymer coatings for smart textiles 11

J.L. Hu, J. Lu

2.1 Introduction 11
2.2 Memory polymers 12
2.3 Functions of memory coating textiles 18
2.4 Conclusions 28
References 29

3 Environmentally mild self-cleaning processes on textile surfaces under daylight irradiation: critical issues 35

/. Kiwi, S. Rtimi

3.1 Introduction: self-cleaning of textiles by mild environmental sunlight-activated processes 35
3.2 Pretreatment by and functionalization of surfaces by radiofrequency plasma and ultraviolet-C (184 nanomoles) 36
3.3 Coating by colloidal titanium dioxide of artificial fibers such as polyamide and polyester: evaluation of self-cleaning Performance under low-intensity solar irradiation 37
3.4 Coating by colloidal titanium dioxide of natural fibers: evaluation of self-cleaning Performance under low-intensity solar irradiation 41
3.5 Cotton self-cleaning by titanium dioxide Clusters attached by chemical spacers under low-intensity solar irradiation 43
3.6 Self-cleaning cotton textiles titanium dioxide—modified by Silicon dioxide—protective layers 45
3.7 Coatings by binary oxides and/or promoted or enhanced copper-binary oxides leading to faster stain discoloration under low-intensity solar irradiation: reaction mechanism and surface characterization 46
3.8 Trend of work in this area: future directions 52
Acknowledgments 52
References 52

4 Smart durable and self-healing textile coatings 55
P. Heyse, I. De Vilder, M. Vanneste
4.1 Introduction 55
4.2 Types and classifications of smart coatings for improving textile durability 55
4.3 Properties of textiles with durability-enhancing coatings 64
4.4 Applications of smart durable and self-healing textiles 71
4.5 Future trends 75
4.6 Conclusions 76
Sources of further information 76
Acknowledgments 77
References 77

5 Smart breathable coatings for textiles 81
V.K. Midha, A. Mukhopadhyay
5.1 Introduction 81
5.2 Working principles of smart breathable coatings 85
5.3 Materials for breathable coating 90
5.4 Methods of generating hydrophilic and microporous coatings 93
5.5 Testing and evaluation of different breathable coated fabrics 97
5.6 Applications 104
5.7 Conclusions and future trends 106
References 107

6 Conductive polymer coatings 113
A. Kaynak
6.1 Introduction 113
6.2 Conductive polymers for textile coating 113
6.3 Properties and applications of conducting polymers 123
6.4 Conclusion 132
References 134
11 Nanotechnology-based coating techniques for smart textiles
M. Parvinzadeh Gashti, E. Pakdel, F. Alimohammadi

11.1 Introduction

11.2 Types and classifications of nanotechnology-based coating techniques

11.3 Nanofibre coating via electrospinning

11.4 Future trends

11.5 Conclusion

References

12 Biomimetic nanocoatings for structural coloration of textiles
J. Shao, G. Liu, L. Zhou

12.1 Introduction

12.2 Characterization of biomimetic structural coloration

12.3 Structural colors of thin-film interference on textiles with electrostatic self-assembly

12.4 Structural colors of photonic crystals on textiles

12.5 Conclusions and future trends

Acknowledgments

References

13 Functional modification of Aber surface via sol—gel technology
C. Wang, Y. Yin

13.1 Introduction

13.2 Hydrophobic and oleophobic modifications

13.3 Anti-ultraviolet property using titanium dioxide hybrid sol

13.4 Antibacterial finishing using cationic or titanium dioxide hybrid sol

13.5 Color fixation using smart silane coupling agent hybrid sol

13.6 Conclusion

Acknowledgments

References

Part Three Applications of smart textiles with responsive coatings

14 Smart coatings for comfort in clothing
D. Jocic

14.1 Introduction

14.2 Principles of comfort in textiles and clothing

14.3 Technologies for smart textile coatings

14.4 Functions of smart textile/apparel coatings
15 Smart coatings for sportswear 355
M. Manshahia, A. Das, R. Alagirusamy
15.1 Introduction 355
15.2 Smart coating and functional requirements of sportswear 356
15.3 Smart coatings to enhance comfort in sportswear 357
15.4 Smart coating to provide protection 361
15.5 Smart coating for Performance enhancement 365
15.6 Smart textiles for health and motion monitoring in sportswear 368
15.7 Conclusions 369
References 370

16 Smart coatings for protective clothing 375
H. Cao
16.1 Introduction 375
16.2 Smart coating for body armor application 376
16.3 Smart coating for hazardous material protective clothing 380
16.4 Smart coating for health care protective clothing 382
16.5 Smart coating for firefighter protective clothing 383
16.6 Future trends 386
References 386

17 Smart medical textiles based on cyclodextrins for curative or preventive patient care 391
L. Leclercq
17.1 Introduction 391
17.2 Cyclodextrin production, binding properties, and applications 392
17.3 Cyclodextrins grafted on textiles for medical purposes 406
17.4 Conclusion and perspectives 420
Acknowledgment 421
References 421

18 Smart coatings for textiles in architecture 429
A. Ritter
18.1 Introduction 429
18.2 Current trends in advanced architecture and smart textiles for architectural applications 429
18.3 Current components and types of smart-coated textiles for architectural applications 433
18.4 Future trends in advanced architecture and smart textiles for architectural applications 443
18.5 Applications for interior, exterior use and for actuators 447
 References 451
 Further reading 452

Index 455