
The Art of Unit Testing
with Examples in .NET

Roy Osherove

11
M A N N I N G

Greenwich
(74° w. long.)

Brief contents

PART 1 GETTING STARTED 1
7 o r/7(? basics of unit testing 3

2 o A first unit teat 21

PART 2 CORE TECHNIQUES 47
3 ° Using stubs to break dependencies 49

4 o interaction testing using mock objects 32

5 o isolation (mock object) frameworks 99

PART 3 THE TEST CODE 139
6 o Test hierarchies and organization 141

7 o The pillars of good tests 171

PART 4 DESIGN AND PROCESS 217
3 o Integrating unit testing into the organization 219

9 ° Working with legacy code 239

Contents

foreword xv
preface xvii
acknowledgments xix
about this book xx
about the cover illustration xxiii

PART 1 GETTING 5TARTED 1

1 The basics of unit testing 3
1.1 Unit testing—the classic definition 4

The importance of writing "good" unit tests 5 o We've
all written unit tests (sort of) 5

7.i? Properties of a good unit test 6

1.3 Integration tests 7
Drawbacks of integration tests compared to
automated unit tests 9

7.4 unit test—a definition 11

1.5 /I simple unit test example 12

1.6 Test-driven development 16

1.7 Summary 19

2 A first unit test 21
2.1 Frameworks for unit testing 22

What unit-testing frameworks offer 22 ° The xllnit
frameworks 25

ix

x Contents

2.2 Introducing the LogAn project 25

2.3 First steps with NUnit 26
Installing NUnit 26 o Loading upthe solution 26
o Using the NUnit attributes in your code 29

2.4 Writing our first test 30
The Assert class 31 o Running our first test with
NUnit 32 o Fixing our code and passing the
test 33 o From red to green 33

2.5 More NUnit attributes 34
Setup and teardown 34 o Checking for expected
exceptions 36 ° Ignoring tests 3S> o Setting
test categories 39

2.6 indirect testing of state 40

2.7 Summary 44

PART 2 CORE TECHNIQUES 47

3 Using stubs to break dependencies 49
5 / introducing stubs 50

3.2 Identifying a filesystem dependency in Log An 51

3.3 Determining how to easily test LogAnalyzer 52

3.4 Refadoring our design to be more testable 55
Extract an interface to allow replacing underlying
implementation 55 o Inject stub implementation
into a class under test 5<S o Receive an
interface at the constructor level (constructor
injection) 5& o Receive an interface as a property
get or set 64 ° Getting a stub just before a
method call 66

3.5 Variations on refactoring techniques 74
Using Extract and Override to create stub
results 75

3.6 Overcoming the encapsulation problem 77
Using internal and [InternalsVisibleTo] 76 o
Using the [Conditional] attribute 79 o Using #if
and #endif with conditional compilation 30

J5.7 Summary &0

Contents xi

4 Interaction testing using mock objects 32
•4. / State-based versus interaction testing 33

4.2 The difference between mocks and stubs 34

4.3 A simple manual mock example 37

4.4 Using a mock and a stub together 39

4.5 One mock per test 94

4.6 Stub chains: stubs that produce mocks or other stubs 95

4.7 The problems with handwritten mocks and stubs 96

4.3 Summary 97

5 Isolation (mock object) frameworks 99
5.1 Why use isolation frameworks? 100

5.2 Dynamically creating a fake object 102
Introducing Rhino Mocks into your tests 102 o
Replacing a handwritten mock object with
a dynamic one 103

5.3 Strict versus nonstrict mock objects 106
Strict mocks 106 ° Nonstrict mocks 107

5.4 Returning values from fake objects 103

5.5 Creating smart stubs with an isolation framework 110
Creating a stub in Rhino Mocks 110 o Combining
dynamic stubs and mocks 112

5.6 Parameter constraints for mocks and stubs 115
Checking parameters with string constraints 115 o
Checking parameter object properties with
constraints 115 o Executing callbacks for
parameter verification 120

5.7 Testing for event-related activities 121
Testing thatan event has been subscribed to 122 o
Triggering events from mocks and stubs 123 o
Testing whether an event was triggered 124

5.3 Arrange-act-assert syntax for isolation 126

5.9 Currentisolationframeworksfor.NET 130
NUnit.Mocks 130 ° NMock 131 ° NMock2 131
a Typemock Isolator 132 o Rhino Mocks 132 o
Moq 134

xii Contents

5.10 Advantages of isolation frameworks 134

5.11 Traps to avoid when using isolation frameworks 135
Unreadable test code 135 o Verifying the wrong
things 136 o Having more than one mock per
test 136 o Overspecifying the tests 136

5.12 Summary 137

PART 3 THE TEST CODE 139

6 Test hierarchies and organization 141
/ Having automated builds run automated tests 142

Anatomy of an automated build 142 o Triggering
builds and continuous integration 144 o
Automated build types 144

6.2 Mapping out tests based on speed and type 145
The human factorof separating unit from integration
tests 146 o The safe green zone 147

6.3 Ensuring tests are part of source control 143

6.4 Mapping test classes to code under test 143
Mapping tests to projects 145 o Mapping tests
to classes 149 o Mapping tests to specific
methods 150

6.5 Building a test AH for your application 150
Using test class inheritance patterns 151 o
Creating test utility classes and methods 167 °
Making your API known to developers 168

6.6 5ummary 169

7 The pillars of good tests 171
7.1 Writing trustworthy tests 172

Deciding when to remove or change tests 172 o
Avoiding logic in tests 176 ° Testing only one
thing 179 o Making tests easy to run 180 o
Assuring code coverage 180

7.2 Writing maintainable tests 131
Testing private or protected methods 182 o
Removing duplication 184 o Using setup methods
in a maintainable manner 188 o Enforcing test
isolation 191 o Avoiding multiple asserts 198 o

Contents xiii

Avoiding testing multiple aspects of the same
object 202 o Avoiding overspecification in
tests 205

7.3 Writing readable tests 209
Naming unit tests 210 o Naming variables 211 o
Asserting yourself with meaning 212 o Separating
asserts from actions 214 ° Setting up and tearing
down 214

7.4 Summary 215

{

PART 4 DESIGN AND PROCESS 217

& Integrating unit testing into the organization 219
3. / Steps to becoming an agent of change 220

Be prepared for the tough questions 220 o
Convince insiders: champions and blockers 220 o
Identify possible entry points 222

3.2 Ways to succeed 223
Guerrilla implementation (bottom-up) 223 o
Convincing management (top-down) 224 o
Getting an outside champion 224 o Making
progress visible 225 o Aiming for specific goals
227 o Realizing that there will be hurdles 222>

Ways to fail 229
Lack of a driving force 229 o Lack of political
support 229 o Bad implementations and first
impressions 230 o Lack of team support 230

Tough questions and answers 23i
How much time will this add to the current
process? 231 ° Will my QA job be at risk because
of this? 233 o How do we know this is actually
working? 234 o is there proof that unit testing
helps? 234 o Why is the QA department still
finding bugs? 235 o We have lots of code without
tests: where do we start? 235 o We work in several
languages: is unit testing feasible? 236 o What if
we develop a combination of software and
hardware? 236 o How can we know we don't have
bugs in our tests? 236 ° I see in my debugger that
my code works fine: why do I need tests? 237 o
Must we do TDD-style coding? 237

Summary 233

xiv Contents

9 Working with legacy code 239
9.1 Where do you start adding tests? 240

9.2 Choosing a selection strategy 242
Pros and cons of the easy-first strategy 242 o
Pros and cons of the hard-first strategy 243

9.3 Writing integration tests before refactoring 244

9.4 important tools for legacy code unit testing 246
Isolate dependencies easily with Typemock
Isolator 246 o Find testability problems with
Depender 246 o Use JMockit for Java legacy
code 246 o Use Vise while refactoring your Java
code 250 o Use FitNesse for acceptance tests
before you refactor 251 o Read Michael Feathers'
book on legacy code 253 o Use NDepend to
investigate your production code 253 ° Use
ReSharperto navigate and refactor production
code 253 ° Detect duplicate code (and bugs) with
Simian 254 o Detect threading issues with
Typemock Pacer 254

9.5 Summary 254

Appendix A Design and testability 256

Appendix B Extra tools and frameworks 260

Index 204

