1 Introduction and Background

1.1 The Context for the Long Term Evolution of UMTS
 1.1.1 Historical Context
 1.1.2 LTE in the Mobile Radio Landscape
 1.1.3 The Standardization Process in 3GPP

1.2 Requirements and Targets for the Long Term Evolution
 1.2.1 System Performance Requirements
 1.2.2 Deployment Cost and Interoperability

1.3 Technologies for the Long Term Evolution
 1.3.1 Multicarrier Technology
 1.3.2 Multiple Antenna Technology
 1.3.3 Packet-Switched Radio Interface
 1.3.4 User Equipment Categories
 1.3.5 From the First LTE Release to LTE-Advanced

1.4 From Theory to Practice

References
Part I Network Architecture and Protocols

2 Network Architecture

Sudeep Palat and Philippe Godin

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>25</td>
</tr>
<tr>
<td>2.2 Overall Architectural Overview</td>
<td>26</td>
</tr>
<tr>
<td>2.2.1 The Core Network</td>
<td>27</td>
</tr>
<tr>
<td>2.2.2 The Access Network</td>
<td>30</td>
</tr>
<tr>
<td>2.2.3 Roaming Architecture</td>
<td>31</td>
</tr>
<tr>
<td>2.3 Protocol Architecture</td>
<td>32</td>
</tr>
<tr>
<td>2.3.1 User Plane</td>
<td>32</td>
</tr>
<tr>
<td>2.3.2 Control Plane</td>
<td>33</td>
</tr>
<tr>
<td>2.4 Quality of Service and EPS Bearers</td>
<td>34</td>
</tr>
<tr>
<td>2.4.1 Bearer Establishment Procedure</td>
<td>37</td>
</tr>
<tr>
<td>2.4.2 Inter-Working with other RATs</td>
<td>38</td>
</tr>
<tr>
<td>2.5 The E-UTRAN Network Interfaces: SI Interface</td>
<td>40</td>
</tr>
<tr>
<td>2.5.1 Protocol Structure over SI</td>
<td>41</td>
</tr>
<tr>
<td>2.5.2 Initiation over SI</td>
<td>43</td>
</tr>
<tr>
<td>2.5.3 Context Management over SI</td>
<td>43</td>
</tr>
<tr>
<td>2.5.4 Bearer Management over SI</td>
<td>44</td>
</tr>
<tr>
<td>2.5.5 Paging over SI</td>
<td>44</td>
</tr>
<tr>
<td>2.5.6 Mobility over SI</td>
<td>45</td>
</tr>
<tr>
<td>2.5.7 Load Management over SI</td>
<td>47</td>
</tr>
<tr>
<td>2.5.8 Trace Function</td>
<td>48</td>
</tr>
<tr>
<td>2.5.9 Delivery of Warning Messages</td>
<td>48</td>
</tr>
<tr>
<td>2.6 The E-UTRAN Network Interfaces: X2 Interface</td>
<td>49</td>
</tr>
<tr>
<td>2.6.1 Protocol Structure over X2</td>
<td>49</td>
</tr>
<tr>
<td>2.6.2 Initiation over X2</td>
<td>49</td>
</tr>
<tr>
<td>2.6.3 Mobility over X2</td>
<td>51</td>
</tr>
<tr>
<td>2.6.4 Load and Interference Management Over X2</td>
<td>54</td>
</tr>
<tr>
<td>2.6.5 UE Historical Information Over X2</td>
<td>54</td>
</tr>
<tr>
<td>2.7 Summary</td>
<td>55</td>
</tr>
<tr>
<td>References</td>
<td>55</td>
</tr>
</tbody>
</table>

3 Control Plane Protocols

Himke van der Velde

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>57</td>
</tr>
<tr>
<td>3.2 Radio Resource Control (RRC)</td>
<td>58</td>
</tr>
<tr>
<td>3.2.1 Introduction</td>
<td>58</td>
</tr>
<tr>
<td>3.2.2 System Information</td>
<td>59</td>
</tr>
<tr>
<td>3.2.3 Connection Control within LTE</td>
<td>63</td>
</tr>
<tr>
<td>3.2.4 Connected Mode Inter-RAT Mobility</td>
<td>73</td>
</tr>
<tr>
<td>3.2.5 Measurements</td>
<td>75</td>
</tr>
<tr>
<td>3.2.6 Other RRC Signalling Aspects</td>
<td>78</td>
</tr>
<tr>
<td>3.3 PLMN and Cell Selection</td>
<td>78</td>
</tr>
</tbody>
</table>
CONTENTS

3.3.1 Introduction 78
3.3.2 PLMN Selection 79
3.3.3 Cell Selection 79
3.3.4 Cell Reselection 80
3.4 Paging 84
3.5 Summary 86
References 86

4 User Plane Protocols 87

Patrick Fischer, SeungJune Yi, SungDuck Chun and YoungDae Lee

4.1 Introduction to the User Plane Protocol Stack 87
4.2 Packet Data Convergence Protocol (PDCP) 89
 4.2.1 Functions and Architecture 89
 4.2.2 Header Compression 90
 4.2.3 Security 92
 4.2.4 Handover 93
 4.2.5 Discard of Data Packets 95
 4.2.6 PDCP PDU Formats 97
4.3 Radio Link Control (RLC) 98
 4.3.1 RLC Entities 99
 4.3.2 RLC PDU Formats 105
4.4 Medium Access Control (MAC) 108
 4.4.1 MAC Architecture 108
 4.4.2 MAC Functions 111
4.5 Summary of the User Plane Protocols 120
References 120

Part II Physical Layer for Downlink 121

5 Orthogonal Frequency Division Multiple Access (OFDMA) 123

Andrea Ancora, Issam Toufik, Andreas Bury and Dirk Slock

5.1 Introduction 123
 5.1.1 History of OFDM Development 124
5.2 OFDM 125
 5.2.1 Orthogonal Multiplexing Principle 125
 5.2.2 Peak-to-Average Power Ratio and Sensitivity to Non-Linearity 131
 5.2.3 Sensitivity to Carrier Frequency Offset and Time-Varying Channels 133
 5.2.4 Timing Offset and Cyclic Prefix Dimensioning 135
5.3 OFDMA 137
5.4 Parameter Dimensioning 139
 5.4.1 Physical Layer Parameters for LTE 140
5.5 Summary 142
References 142
6 Introduction to Downlink Physical Layer Design

Matthew Baker

6.1 Introduction
6.2 Transmission Resource Structure
6.3 Signal Structure
6.4 Introduction to Downlink Operation
References

7 Synchronization and Cell Search

Fabrizio Tomatis and Stefania Sesia

7.1 Introduction
7.2 Synchronization Sequences and Cell Search in LTE
7.2.1 Zadoff-Chu Sequences
7.2.2 Primary Synchronization Signal (PSS) Sequences
7.2.3 Secondary Synchronization Signal (SSS) Sequences
7.3 Coherent Versus Non-Coherent Detection
References

8 Reference Signals and Channel Estimation

Andrea Ancora, Stefania Sesia and Alex Gorokhov

8.1 Introduction
8.2 Design of Reference Signals in the LTE Downlink
8.2.1 Cell-Specific Reference Signals
8.2.2 UE-Specific Reference Signals in Release 8
8.2.3 UE-Specific Reference Signals in Release 9
8.3 RS-Aided Channel Modelling and Estimation
8.3.1 Time-Frequency-Domain Correlation: The WSSUS Channel Model
8.3.2 Spatial-Domain Correlation: The Kronecker Model
8.4 Frequency-Domain Channel Estimation
8.4.1 Channel Estimate Interpolation
8.4.2 General Approach to Linear Channel Estimation
8.4.3 Performance Comparison
8.5 Time-Domain Channel Estimation
8.5.1 Finite and Infinite Length MMSE
8.5.2 Normalized Least-Mean-Square
8.6 Spatial-Domain Channel Estimation
8.7 Advanced Techniques
References

9 Downlink Physical Data and Control Channels

Matthew Baker and Tim Moulsley

9.1 Introduction
9.2 Downlink Data-Transporting Channels
9.2.1 Physical Broadcast Channel (PBCH)
9.2.2 Physical Downlink Shared Channel (PDSCH)
10 Link Adaptation and Channel Coding

Brian Classon, Ajit Nimbalker, Stefania Sesia and Issam Toufik

10.1 Introduction 215
10.2 Link Adaptation and CQI Feedback 217
 10.2.1 CQI Feedback in LTE 218
10.3 Channel Coding 223
 10.3.1 Theoretical Aspects of Channel Coding 223
 10.3.2 Channel Coding for Data Channels in LTE 232
 10.3.3 Channel Coding for Control Channels in LTE 244
10.4 Conclusions 245
References 246

11 Multiple Antenna Techniques

Thomas Salzer, David Gesbert, Cornelius van Rensburg, Filippo Tosato, Florian Kaltenberger and Tetsushi Abe

11.1 Fundamentals of Multiple Antenna Theory 249
 11.1.1 Overview 249
 11.1.2 MIMO Signal Model 252
 11.1.3 Single-User MIMO Techniques 253
 11.1.4 Multi-User MIMO Techniques 258
11.2 MIMO Schemes in LTE 262
 11.2.1 Practical Considerations 263
 11.2.2 Single-User Schemes 264
 11.2.3 Multi-User MIMO 274
 11.2.4 MIMO Performance 276
11.3 Summary 276
References 277

12 Multi-User Scheduling and Interference Coordination

Issam Toufik and Raymond Knopp

12.1 Introduction 279
12.2 General Considerations for Resource Allocation Strategies 280
12.3 Scheduling Algorithms 283
 12.3.1 Ergodic Capacity 283
 12.3.2 Delay-Limited Capacity 285
12.4 Considerations for Resource Scheduling in LTE
12.5 Interference Coordination and Frequency Reuse
 12.5.1 Inter-eNodeB Signalling to Support Downlink Frequency-Domain ICIC in LTE
 12.5.2 Inter-eNodeB Signalling to Support Uplink Frequency-Domain ICIC in LTE
 12.5.3 Static versus Semi-Static ICIC
12.6 Summary
References

13 **Broadcast Operation**
Himke van der Velde, Olivier Hus and Matthew Baker

13.1 Introduction
13.2 Broadcast Modes
13.3 Overall MBMS Architecture
 13.3.1 Reference Architecture
 13.3.2 Content Provision
 13.3.3 Core Network
 13.3.4 Radio Access Network – E-UTRAN/UTRAN/GERAN and UE
 13.3.5 MBMS Interfaces
13.4 MBMS Single Frequency Network Transmission
 13.4.1 Physical Layer Aspects
 13.4.2 MBSFN Areas
13.5 MBMS Characteristics
 13.5.1 Mobility Support
 13.5.2 UE Capabilities and Service Prioritization
13.6 Radio Access Protocol Architecture and Signalling
 13.6.1 Protocol Architecture
 13.6.2 Session Start Signalling
 13.6.3 Radio Resource Control (RRC) Signalling Aspects
 13.6.4 Content Synchronization
 13.6.5 Counting Procedure
13.7 Public Warning Systems
13.8 Comparison of Mobile Broadcast Modes
 13.8.1 Delivery by Cellular Networks
 13.8.2 Delivery by Broadcast Networks
 13.8.3 Services and Applications
References

Part III **Physical Layer for Uplink**
Robert Love and Vijay Nangia

14 **Uplink Physical Layer Design**
14.1 Introduction
14.2 SC-FDMA Principles
References
15 Uplink Reference Signals

Robert Love and Vijay Nangia

15.1 Introduction

15.2 RS Signal Sequence Generation
 15.2.1 Base RS Sequences and Sequence Grouping
 15.2.2 Orthogonal RS via Cyclic Time-Shifts of a Base Sequence

15.3 Sequence-Group Hopping and Planning
 15.3.1 Sequence-Group Hopping
 15.3.2 Sequence-Group Planning

15.4 Cyclic Shift Hopping

15.5 Demodulation Reference Signals (DM-RS)

15.6 Uplink Sounding Reference Signals (SRS)
 15.6.1 SRS Subframe Configuration and Position
 15.6.2 Duration and Periodicity of SRS Transmissions
 15.6.3 SRS Symbol Structure

15.7 Summary

References

16 Uplink Physical Channel Structure

Robert Love and Vijay Nangia

16.1 Introduction

16.2 Physical Uplink Shared Data Channel Structure
 16.2.1 Scheduling on PUSCH
 16.2.2 PUSCH Transport Block Sizes

16.3 Uplink Control Channel Design
 16.3.1 Physical Uplink Control Channel (PUCCH) Structure
 16.3.2 Types of Control Signalling Information and PUCCH Formats
 16.3.3 Channel State Information Transmission on PUCCH (Format 2)
 16.3.4 Multiplexing of CSI and HARQ ACK/NACK from a UE on PUCCH
 16.3.5 HARQ ACK/NACK Transmission on PUCCH (Format 1a/1b)
 16.3.6 Multiplexing of CSI and HARQ ACK/NACK in the Same (Mixed) PUCCH RB
 16.3.7 Scheduling Request (SR) Transmission on PUCCH (Format 1)

16.4 Multiplexing of Control Signalling and UL-SCH Data on PUSCH

16.5 ACK/NACK Repetition
CONTENTS

16.6 Multiple-Antenna Techniques 367
 16.6.1 Closed-Loop Switched Antenna Diversity 367
 16.6.2 Multi-User 'Virtual’ MIMO or SDMA 368
16.7 Summary 369
References 369

17 Random Access 371

Pierre Bertrand and Jing Jiang

17.1 Introduction 371
17.2 Random Access Usage and Requirements in LTE 371
17.3 Random Access Procedure 372
 17.3.1 Contention-Based Random Access Procedure 373
 17.3.2 Contention-Free Random Access Procedure 376
17.4 Physical Random Access Channel Design 376
 17.4.1 Multiplexing of PRACH with PUSCH and PUCCH 376
 17.4.2 The PRACH Structure 377
 17.4.3 Preamble Sequence Theory and Design 385
17.5 PRACH Implementation 396
 17.5.1 UE Transmitter 397
 17.5.2 eNodeB PRACH Receiver 398
17.6 Time Division Duplex (TDD) PRACH 404
 17.6.1 Preamble Format 4 404
17.7 Concluding Remarks 405
References 406

18 Uplink Transmission Procedures 407

Matthew Baker

18.1 Introduction 407
18.2 Uplink Timing Control 407
 18.2.1 Overview 407
 18.2.2 Timing Advance Procedure 408
18.3 Power Control 411
 18.3.1 Overview 411
 18.3.2 Detailed Power Control Behaviour 412
 18.3.3 UE Power Headroom Reporting 419
 18.3.4 Summary of Uplink Power Control Strategies 420
References 420

Part IV Practical Deployment Aspects 421

19 User Equipment Positioning 423

Karri Ranta-aho and Zukang Shen

19.1 Introduction 423
19.3 Observed Time Difference Of Arrival (OTDOA) Positioning 426
CONTENTS

19.3.1 Positioning Reference Signals (PRS) 427
19.3.2 OTDOA Performance and Practical Considerations 430
19.4 Cell-ID-based Positioning 431
19.4.1 Basic CID Positioning 431
19.4.2 Enhanced CID Positioning using Round Trip Time and UE Receive Level Measurements 431
19.4.3 Enhanced CID Positioning using Round Trip Time and Angle of Arrival 432
19.5 LTE Positioning Protocols 433
19.6 Summary and Future Techniques 435
References 436

20 The Radio Propagation Environment 437
Juha Ylitalo and Tommi Jamsa

20.1 Introduction 437
20.2 SISO and SIMO Channel Models 438
20.2.1 ITU Channel Model 439
20.2.2 3GPP Channel Model 440
20.2.3 Extended ITU Models 440
20.3 MIMO Channel Models 441
20.3.1 SCM Channel Model 442
20.3.2 SCM-Extension Channel Model 444
20.3.3 WINNER Model 445
20.3.4 LTE Evaluation Model 446
20.3.5 Extended ITU Models with Spatial Correlation 448
20.3.6 ITU Channel Models for IMT-Advanced 449
20.3.7 Comparison of MIMO Channel Models 453
20.4 Radio Channel Implementation for Conformance Testing 454
20.4.1 Performance and Conformance Testing 454
20.4.2 Future Testing Challenges 454
20.5 Concluding Remarks 455
References 455

21 Radio Frequency Aspects 457
Moray Rumney, Takaharu Nakamura, Stefania Sesia, Tony Sayers and Adrian Payne

21.1 Introduction 457
21.2 Frequency Bands and Arrangements 459
21.3 Transmitter RF Requirements 462
21.3.1 Requirements for the Intended Transmissions 462
21.3.2 Requirements for Unwanted Emissions 467
21.3.3 Power Amplifier Considerations 471
21.4 Receiver RF Requirements 474
21.4.1 Receiver General Requirements 474
21.4.2 Transmit Signal Leakage 475
21.4.3 Maximum Input Level 477
21.4.4 Small Signal Requirements 478
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.4.5 Selectivity and Blocking Specifications</td>
<td>482</td>
</tr>
<tr>
<td>21.4.6 Spurious Emissions</td>
<td>488</td>
</tr>
<tr>
<td>21.4.7 Intermodulation Requirements</td>
<td>489</td>
</tr>
<tr>
<td>21.4.8 Dynamic Range</td>
<td>491</td>
</tr>
<tr>
<td>21.5 RF Impairments</td>
<td>492</td>
</tr>
<tr>
<td>21.5.1 Transmitter RF Impairments</td>
<td>492</td>
</tr>
<tr>
<td>21.5.2 Model of the Main RF Impairments</td>
<td>495</td>
</tr>
<tr>
<td>21.6 Summary</td>
<td>500</td>
</tr>
<tr>
<td>References</td>
<td>501</td>
</tr>
</tbody>
</table>

22 Radio Resource Management

Muhammad Kazmi

- **22.1 Introduction** 503
- **22.2 Cell Search Performance** 505
 - 22.2.1 Cell Search within E-UTRAN 505
 - 22.2.2 E-UTRAN to E-UTRAN Cell Global Identifier Reporting Requirements 509
 - 22.2.3 E-UTRAN to UTRAN Cell Search 510
 - 22.2.4 E-UTRAN to GSM Cell Search 511
 - 22.2.5 Enhanced Inter-RAT Measurement Requirements 512
- **22.3 Mobility Measurements** 513
 - 22.3.1 E-UTRAN Measurements 513
 - 22.3.2 UTRAN Measurements 514
 - 22.3.3 GSM Measurements: GSM Carrier RSSI 516
 - 22.3.4 CDMA2000 Measurements 516
- **22.4 UE Measurement Reporting Mechanisms and Requirements** 516
 - 22.4.1 E-UTRAN Event Triggered Reporting Requirements 517
 - 22.4.2 Inter-RAT Event-Triggered Reporting 517
- **22.5 Mobility Performance** 518
 - 22.5.1 Mobility Performance in RRC_IDLE State 518
 - 22.5.2 Mobility Performance in RRC_CONNECTED State 522
- **22.6 RRC Connection Mobility Control Performance** 525
 - 22.6.1 RRC Connection Re-establishment 525
 - 22.6.2 Random Access 525
- **22.7 Radio Link Monitoring Performance** 526
 - 22.7.1 In-sync and Out-of-sync Thresholds 526
 - 22.7.2 Requirements without DRX 527
 - 22.7.3 Requirements with DRX 527
 - 22.7.4 Requirements during Transitions 527
- **22.8 Concluding Remarks** 528

References 529

23 Paired and Unpaired Spectrum

Nicholas Anderson

- **23.1 Introduction** 531
- **23.2 Duplex Modes** 532
23.3 Interference Issues in Unpaired Spectrum 533
 23.3.1 Adjacent Carrier Interference Scenarios 535
 23.3.2 Summary of Interference Scenarios 543
23.4 Half-Duplex System Design Aspects 544
 23.4.1 Accommodation of Transmit-Receive Switching 544
 23.4.2 Coexistence between Dissimilar Systems 547
 23.4.3 HARQ and Control Signalling for TDD Operation 548
 23.4.4 Half-Duplex FDD (HD-FDD) Physical Layer Operation 551
23.5 Reciprocity 552
 23.5.1 Conditions for Reciprocity 554
 23.5.2 Applications of Reciprocity 558
 23.5.3 Summary of Reciprocity Considerations 561
References 562

24 Picocells, Femtocells and Home eNodeBs 563
Philippe Godin and Nick Whinnett
24.1 Introduction 563
24.2 Home eNodeB Architecture 564
 24.2.1 Architecture Overview 564
 24.2.2 Functionalities 565
 24.2.3 Mobility 566
 24.2.4 Local IP Access Support 568
24.3 Interference Management for Femtocell Deployment 569
 24.3.1 Interference Scenarios 570
 24.3.2 Network Listen Mode 574
24.4 RF Requirements for Small Cells 574
 24.4.1 Transmitter Specifications 575
 24.4.2 Receiver Specifications 576
 24.4.3 Demodulation Performance Requirements 578
 24.4.4 Time Synchronization for TDD Operation 579
24.5 Summary 580
References 580

25 Self-Optimizing Networks 581
Philippe Godin
25.1 Introduction 581
25.2 Automatic Neighbour Relation Function (ANRF) 582
 25.2.1 Intra-LTE ANRF 582
 25.2.2 Automatic Neighbour Relation Table 583
 25.2.3 Inter-RAT or Inter-Frequency ANRF 583
25.3 Self-Configuration of eNodeB and MME 584
 25.3.1 Self-Configuration of eNodeB/MME over SI 585
 25.3.2 Self-Configuration of IP address and X2 interface 585
25.4 Automatic Configuration of Physical Cell Identity 587
25.5 Mobility Load Balancing Optimization 587
25.5.1 Intra-LTE Load Exchange 588
25.5.2 Intra-LTE Handover Parameter Optimization 589
25.5.3 Inter-RAT Load Exchange 590
25.5.4 Enhanced Inter-RAT Load Exchange 590
25.6 Mobility Robustness Optimization 591
25.6.1 Too-Late Handover 591
25.6.2 Coverage Hole Detection 591
25.6.3 Too-Early Handover 592
25.6.4 Handover to an Inappropriate Cell 592
25.6.5 MRO Verdict Improvement 593
25.6.6 Handover to an Unprepared Cell 594
25.6.7 Unnecessary Inter-RAT Handovers 594
25.6.8 Potential Remedies for Identified Mobility Problems 595
25.7 Random Access CHannel (RACH) Self-Optimization 595
25.8 Energy Saving 596
25.9 Emerging New SON Use Cases 597
References 598

26 LTE System Performance 599

Tetsushi Abe

26.1 Introduction 599
26.2 Factors Contributing to LTE System Capacity 599
26.2.1 Multiple Access Techniques 600
26.2.2 Frequency Reuse and Interference Management 600
26.2.3 Multiple Antenna Techniques 601
26.2.4 Semi-Persistent Scheduling 601
26.2.5 Short Subframe Duration and Low HARQ Round Trip Time 602
26.2.6 Advanced Receivers 602
26.2.7 Layer 1 and Layer 2 Overhead 602
26.3 LTE Capacity Evaluation 603
26.3.1 Downlink and Uplink Spectral Efficiency 605
26.3.2 VoIP Capacity 608
26.4 LTE Coverage and Link Budget 608
26.5 Summary 610
References 611

Part V LTE-Advanced 613

27 Introduction to LTE-Advanced 615

Dirk Gerstenberger

27.1 Introduction and Requirements 615
27.2 Overview of the Main Features of LTE-Advanced 618
27.3 Backward Compatibility 619
27.4 Deployment Aspects 620
27.5 UE Categories for LTE-Advanced 621
28 Carrier Aggregation
Juan Montojo and Jelena Damnjanovic

28.1 Introduction

28.2 Protocols for Carrier Aggregation
28.2.1 Initial Acquisition, Connection Establishment and CC Management
28.2.2 Measurements and Mobility
28.2.3 User Plane Protocols

28.3 Physical Layer Aspects
28.3.1 Downlink Control Signalling
28.3.2 Uplink Control Signalling
28.3.3 Sounding Reference Signals
28.3.4 Uplink Timing Advance
28.3.5 Uplink Power Control
28.3.6 Uplink Multiple Access Scheme Enhancements

28.4 UE Transmitter and Receiver Aspects
28.4.1 UE Transmitter Aspects of Carrier Aggregation
28.4.2 UE Receiver Aspects of Carrier Aggregation
28.4.3 Prioritized Carrier Aggregation Scenarios

28.5 Summary

References

29 Multiple Antenna Techniques for LTE-Advanced
Alex Gorokhov, Amir Farajidana, Kapil Bhattad, Xiliang Luo and Stefan Geirhofer

29.1 Downlink Reference Signals
29.1.1 Downlink Reference Signals for Demodulation
29.1.2 Downlink Reference Signals for Estimation of Channel State Information (CSI-RS)

29.2 Uplink Reference Signals
29.2.1 Uplink DeModulation Reference Signals (DM-RS)
29.2.2 Sounding Reference Signals (SRSs)

29.3 Downlink MEMO Enhancements
29.3.1 Downlink 8-Antenna Transmission
29.3.2 Enhanced Downlink Multi-User MIMO
29.3.3 Enhanced CSI Feedback

29.4 Uplink Multiple Antenna Transmission
29.4.1 Uplink SU-MIMO for PUSCH
29.4.2 Uplink Transmit Diversity for PUCCH

29.5 Coordinated Multipoint (CoMP) Transmission and Reception
29.5.1 Cooperative MIMO Schemes and Scenarios

29.6 Summary

References
30 Relaying

Eric Hardouin, J. Nicholas Laneman,
Alexander Golitschek, Hidetoshi Suzuki, Osvaldo Gonsa

30.1 Introduction 673
 30.1.1 What is Relaying? 673
 30.1.2 Characteristics of Relay Nodes 675
 30.1.3 Protocol Functionality of Relay Nodes 676
 30.1.4 Relevant Deployment Scenarios 677

30.2 Theoretical Analysis of Relaying 679
 30.2.1 Relaying Strategies and Benefits 679
 30.2.2 Duplex Constraints and Resource Allocation 683

30.3 Relay Nodes in LTE-Advanced 684
 30.3.1 Types of RN 684
 30.3.2 Backhaul and Access Resource Sharing 685
 30.3.3 Relay Architecture 687
 30.3.4 RN Initialization and Configuration 689
 30.3.5 Random Access on the Backhaul Link 690
 30.3.6 Radio Link Failure on the Backhaul Link 690
 30.3.7 RN Security 690
 30.3.8 Backhaul Physical Channels 691
 30.3.9 Backhaul Scheduling 696
 30.3.10 Backhaul HARQ 698

30.4 Summary 699
References 699

31 Additional Features of LTE Release 10

Teck Hu, Philippe Godin and Sudeep Palat

31.1 Introduction 701

31.2 Enhanced Inter-Cell Interference Coordination 703
 31.2.1 LTE Interference Management 703
 31.2.2 Almost Blank Subframes 703
 31.2.3 X2 Interface Enhancements for Time-Domain ICIC 705
 31.2.4 UE Measurements in Time-Domain ICIC Scenarios 706
 31.2.5 RRC Signalling for Restricted Measurements 708
 31.2.6 ABS Deployment Considerations 709

31.3 Minimization of Drive Tests 710
 31.3.1 Logged MDT 711
 31.3.2 Immediate MDT 712

31.4 Machine-Type Communications 712
References 714

32 LTE-Advanced Performance and Future Developments

Takehiro Nakamura and Tetsushi Abe

32.1 LTE-Advanced System Performance 715
32.2 Future Developments 718
References 720

Index 721