Pulse Width Modulation For Power Converters

Principles and Practice

D. Grahame Holmes

Monash University Melbourne, Australia

Thomas A. Lipo University of Wisconsin Madison, Wisconsin

IEEE Series on Power Engineering, Mohamed E. El-Hawary, Series Editor

IEEE PRESS

A JOHN WILEY & SONS, INC., PUBLICATION

Contents

Preface	*********	,	xiii
Acknowled	lgments	S	xiv
Nomenclat	ure		xv
Chapter 1	Intro	duction to Power Electronic Converters	
1.1	Basic	Converter Topologies	2
	1.1.1	Switch Constraints	
	1.1.2	Bidirectional Chopper	4
	1.1.3	Single-Phase Full-Bridge (H-Bridge) Inverter	5
1.2	Volta	ge Source/Stiff Inverters	7
	1.2.1	Two-Phase Inverter Structure	7
	1.2.2	Three-Phase Inverter Structure	8
	1.2.3	Voltage and Current Waveforms in Square-Wave Me	ode9
1.3	Switch	hing Function Representation of Three-Phase Convert	ers 14
1.4	Outpu	t Voltage Control	17
	1.4.1	Volts/Hertz Criterion	17
	1.4.2	Phase Shift Modulation for Single-Phase Inverter	17
	1.4.3	Voltage Control with a Double Bridge	19
1.5	Curre	nt Source/Stiff Inverters	21
1.6	Conce	ept of a Space Vector	24
	1.6.1	d-q-0 Components for Three-Phase Sine Wave Sou	rce/
_		Load	
•	1.6.2	d-q-0 Components for Voltage Source Inverter Ope in Square-Wave Mode	
	1.6.3	Synchronously Rotating Reference Frame	35
1.7	Three	-Level Inverters	38
1.8	Multil	level Inverter Topologies	42
	1.8.1	Diode-Clamped Multilevel Inverter	
1	1.8.2	Capacitor-Clamped Multilevel Inverter	49
	1.8.3	Cascaded Voltage Source Multilevel Inverter	5 i

	1.8.4 Hybrid Voltage Source Inverter	54
1.9	Summary	55
Chapter 2	Harmonic Distortion	57
2.1	Harmonic Voltage Distortion Factor	57
2.2	Harmonic Current Distortion Factor	61
2.3	Harmonic Distortion Factors for Three-Phase Inverters	64
2.4	Choice of Performance Indicator	67
2.5	WTHD of Three-Level Inverter	70
2.6	The Induction Motor Load	73
	2.6.1 Rectangular Squirrel Cage Bars	
	2.6.2 Nonrectangular Rotor Bars	
	2.6.3 Per-Phase Equivalent Circuit	
2.7	Harmonic Distortion Weighting Factors for Induction Motor	
	Load	82
	2.7.1 WTHD for Frequency-Dependent Rotor Resistance	82
	2.7.2 WTHD Also Including Effect of Frequency-Dependen	
	Rotor Leakage Inductance	
	2.7.3 WTHD for Stator Copper Losses	88
2.8	Example Calculation of Harmonic Losses	9 0
2.9	WTHD Normalization for PWM Inverter Supply	91
2.10	Summary	93
Chapter 3	Modulation of One Inverter Phase Leg	95
3.1	Fundamental Concepts of PWM	96
3.2	Evaluation of PWM Schemes	97
3.3	Double Fourier Integral Analysis of a Two-Level Pulse Width Modulated Waveform	
3.4	Naturally Sampled Pulse Width Modulation	.105
	3.4.1 Sine-Sawtooth Modulation	
	3.4.2 Sine-Triangle Modulation	
3.5	PWM Analysis by Duty Cycle Variation	.120
,	3.5.1 Sine-Sawtooth Modulation	
	3.5.2 Sine–Triangle Modulation	

3.6	Regular Sampled Pulse Width Modulation	
	3.6.1 Sawtooth Carrier Regular Sampled PWM	
	3.6.2 Symmetrical Regular Sampled PWM	
	3.6.3 Asymmetrical Regular Sampled PWM	
3.7	"Direct" Modulation	146
3.8	Integer versus Non-Integer Frequency Ratios	148
3.9	Review of PWM Variations	150
3.10	Summary	152
Chapter 4	Modulation of Single-Phase Voltage Source Inverters	155
4.1	Topology of a Single-Phase Inverter	156
4.2	Three-Level Modulation of a Single-Phase Inverter	157
4.3	Analytic Calculation of Harmonic Losses	169
4.4	Sideband Modulation	177
4.5	Switched Pulse Position	183
	4.5.1 Continuous Modulation	
	4.5.2 Discontinuous Modulation	186
4.6	Switched Pulse Sequence	200
	4.6.1 Discontinuous PWM — Single-Phase Leg Switched	200
	4.6.2 Two-Level Single-Phase PWM	207
4.7	Summary	211
Chapter 5	Modulation of Three-Phase Voltage Source Inverters	215
• 5.1	Topology of a Three-Phase Inverter (VSI)	215
5.2	Three-Phase Modulation with Sinusoidal References	216
5.3	Third-Harmonic Reference Injection	226
	5.3.1 Optimum Injection Level	226
	5.3.2 Analytical Solution for Third-Harmonic Injection	230
5.4	Analytic Calculation of Harmonic Losses	241
5.5	Discontinuous Modulation Strategies	250
5.6	Triplen Carrier Ratios and Subharmonics	251
	5.6.1 Triplen Carrier Ratios	
	5.6.2 Subharmonics	253

	5.7	Summary	.257
Chap	pter 6	Zero Space Vector Placement Modulation Strategies	.259
	6.1	Space Vector Modulation	.259
		6.1.1 Principles of Space Vector Modulation	.259
		6.1.2 SVM Compared to Regular Sampled PWM	.265
	6.2	Phase Leg References for Space Vector Modulation	.267
	6.3	Naturally Sampled SVM	.270
	6.4	Analytical Solution for SVM	.272
	6.5	Harmonic Losses for SVM	.291
	6.6	Placement of the Zero Space Vector	.294
	6.7	Discontinuous Modulation	.299
		6.7.1 120° Discontinuous Modulation	.299
		6.7.2 60° and 30° Discontinuous Modulation	.302
	6.8	Phase Leg References for Discontinuous PWM	.307
	6.9	Analytical Solutions for Discontinuous PWM	.311
	6.10	Comparison of Harmonic Performance	.322
	6.11	Harmonic Losses for Discontinuous PWM	.326
	6.12	Single-Edge SVM	.330
	6.13	Switched Pulse Sequence	.331
	6.14	Summary	.333
Chaj	pter 7	Modulation of Current Source Inverters	337
	7.1	Three-Phase Modulators as State Machines	.338
	7.2	Naturally Sampled CSI Space Vector Modulator	.343
	7.3	Experimental Confirmation	.343
	7.4	Summary	.345
Chaj	pter 8	Overmodulation of an Inverter	349
	8.1	The Overmodulation Region	350
	8.2	Naturally Sampled Overmodulation of One Phase Leg of an Inverter	

8.3	Regular Sampled Overmodulation of One Phase Leg of an Inverter	356
8.4	Naturally Sampled Overmodulation of Single- and Three-Ph Inverters	
8.5	PWM Controller Gain during Overmodulation	364
	8.5.1 Gain with Sinusoidal Reference	
	8.5.2 Gain with Space Vector Reference	
	8.5.3 Gain with 60° Discontinuous Reference	
	8.5,4 Compensated Modulation	
8.6	Space Vector Approach to Overmodulation	
8.7	Summary	382
Chapter 9	Programmed Modulation Strategies	383
9.1	Optimized Space Vector Modulation	384
9.2	Harmonic Elimination PWM	396
9.3	Performance Index for Optimality	411
9.4	Optimum PWM	416
9.5	Minimum-Loss PWM	421
9.6	Summary	430
Chapter 10	Programmed Modulation of Multilevel Converters	433
10.1	Multilevel Converter Alternatives	433
10.2	Block Switching Approaches to Voltage Control	436
10.3	Harmonic Elimination Applied to Multilevel Inverters	ng
	10.3.2 Equalization of Voltage and Current Stresses	
	10.3.3 Switching Angles for Harmonic Elimination Assuming Unequal Voltage Levels	ng
10.4	Minimum Harmonic Distortion	
10.5	Summary	
Chton 11	Carrier-Based PWM of Multilevel Inverters	
•		
11.1	PWM of Cascaded Single-Phase H-Bridges	453

		Occurred detailer of Conneded II Duidens	165
•	11.2	Overmodulation of Cascaded H-Bridges	
	11.3	PWM Alternatives for Diode-Clamped Multilevel Inverters	
	11.4	Three-Level Naturally Sampled PD PWM	
		11.4.1 Contour Plot for Three-Level PD PWM	
		11.4.2 Double Fourier Series Harmonic Coefficients	
		11.4.3 Evaluation of the Harmonic Coefficients	
	11.5	Three-Level Naturally Sampled APOD or POD PWM	
	11.6	Overmodulation of Three-Level Inverters	
		•	
	11.7	Five-Level PWM for Diode-Clamped Inverters	
	•	11.7.2 Five-level Naturally Sampled APOD PWM	
		11.7.3 Five-Level POD PWM	
	8.11	PWM of Higher Level Inverters	
	11.9	Equivalent PD PWM for Cascaded Inverters	504
	11.10	Hybrid Multilevel Inverter	
	11.11	Equivalent PD PWM for a Hybrid Inverter	517
	11.12	Third-Harmonic Injection for Multilevel Inverters	519
	11.13	Operation of a Multilevel Inverter with a Variable Modulation	
		Index	
	11.14	Summary	528
Chap	pter 12	Space Vector PWM for Multilevel Converters	531
	12.1	Optimized Space Vector Sequences	531
	12.2	Modulator for Selecting Switching States	534
	12.3.	Decomposition Method	535
	12.4	Hexagonal Coordinate System	538
	12.5	Optimal Space Vector Position within a Switching Period	543
	12.6	Comparison of Space Vector PWM to Carrier-Based PWM	545
	12.7	Discontinuous Modulation in Multilevel Inverters	548
	12.8	Summary	550

Chapter 13	Implementation of a Modulation Controller	555
13.1	Overview of a Power Electronic Conversion System	556
13.2	Elements of a PWM Converter System	.557
	13.2.1 VSI Power Conversion Stage	
	13.2.2 Gate Driver Interface	.565
	13.2.3 Controller Power Supply	.567
	13.2.4 I/O Conditioning Circuitry	
	13.2.5 PWM Controller	.569
13.3	Hardware Implementation of the PWM Process	.572
	13.3.1 Analog versus Digital Implementation	.572
	13.3.2 Digital Timer Logic Structures	.574
13.4	PWM Software Implementation	.579
	13.4.1 Background Software	.580
	13.4.2 Calculation of the PWM Timing Intervals	.581
13.5	Summary	.584
Chapter 14	Continuing Developments in Modulation	.585
. 14.1	Random Pulse Width Modulation	.586
14.2	PWM Rectifier with Voltage Unbalance	.590
14.3	Common Mode Elimination	.598
14.4	Four Phase Leg Inverter Modulation	.603
14.5	Effect of Minimum Pulse Width	.607
14.6	PWM Dead-Time Compensation	.612
14.7	Summary	.619
Appendix 1	Fourier Series Representation of a Double Variable Controlled Waveform	.623
Appendix 2	Jacobi-Anger and Bessel Function Relationships	.629
A2.1	Jacobi-Anger Expansions	.629
A2.2	Bessel Function Integral Relationships	.631
Appendix 3	Three-Phase and Half-Cycle Symmetry Relationships	.635

Appendix 4	Overmodulation of a Single-Phase Leg637
A4.1	Naturally Sampled Double-Edge PWM637
	A4.1.1 Evaluation of Double Fourier Integral for Overmodulated Naturally Sampled PWM638
	A4.1.2 Harmonic Solution for Overmodulated Single-Phase Leg under Naturally Sampled PWM646
	A4.1.3 Linear Modulation Solution Obtained from Overmodulation Solution
	A4.1.4 Square-Wave Solution Obtained from Overmodulation Solution
A4.2	Symmetric Regular Sampled Double-Edge PWM649
	A4.2.1 Evaluation of Double Fourier Integral for Overmodulated Symmetric Regular Sampled PWM650
	A4.2.2 Harmonic Solution for Overmodulated Single-Phase Leg under Symmetric Regular Sampled PWM652
	A4.2.3 Linear Modulation Solution Obtained from Overmodulation Solution653
A4.3	Asymmetric Regular Sampled Double-Edge PWM654
	A4.3.1 Evaluation of Double Fourier Integral for Overmodulated Asymmetric Regular Sampled PWM655
	A4.3.2 Harmonic Solution for Overmodulated Single-Phase Leg under Asymmetric Regular Sampled PWM660
	A4.3.3 Linear Modulation Solution Obtained from Overmodulation Solution661
Appendix 5	Numeric Integration of a Double Fourier Series Representa- tion of a Switched Waveform663
A5.1	Formulation of the Double Fourier Integral663
A5.2	Analytical Solution of the Inner Integral666
A5.3	Numeric Integration of the Outer Integral668
Bibliograph	y671
Index	715