Monte Carlo Methods in Finance

Peter Jäckel
Contents

Preface xi
Acknowledgements xiii
Mathematical Notation xv

1 Introduction 1

2 The Mathematics Behind Monte Carlo Methods 5
 2.1 A Few Basic Terms in Probability and Statistics 5
 2.2 Monte Carlo Simulations 7
 2.2.1 Monte Carlo Supremacy 8
 2.2.2 Multi-dimensional Integration 8
 2.3 Some Common Distributions 9
 2.4 Kolmogorov's Strong Law 18
 2.5 The Central Limit Theorem 18
 2.6 The Continuous Mapping Theorem 19
 2.7 Error Estimation for Monte Carlo Methods 20
 2.8 The Feynman–Kac Theorem 21
 2.9 The Moore–Penrose Pseudo-inverse 21

3 Stochastic Dynamics 23
 3.1 Brownian Motion 23
 3.2 Itô's Lemma 24
 3.3 Normal Processes 25
 3.4 Lognormal Processes 26
 3.5 The Markovian Wiener Process Embedding Dimension 26
 3.6 Bessel Processes 27
 3.7 Constant Elasticity Of Variance Processes 28
 3.8 Displaced Diffusion 29

4 Process-driven Sampling 31
 4.1 Strong versus Weak Convergence 31
 4.2 Numerical Solutions 32
9.2.1 Importance Sampling 103
9.2.2 Rejection Sampling 104
9.3 Normal Variates 105
9.3.1 The Box–Muller Method 105
9.3.2 The Neave Effect 106
9.4 Simulating Multivariate Copula Draws 109

10 Variance Reduction Techniques 111
10.1 Antithetic Sampling 111
10.2 Variate Recycling 112
10.3 Control Variates 113
10.4 Stratified Sampling 114
10.5 Importance Sampling 115
10.6 Moment Matching 116
10.7 Latin Hypercube Sampling 119
10.8 Path Construction 120
10.8.1 Incremental 120
10.8.2 Spectral 122
10.8.3 The Brownian Bridge 124
10.8.4 A Comparison of Path Construction Methods 128
10.8.5 Multivariate Path Construction 131
10.9 Appendix 134
10.9.1 Eigenvalues and Eigenvectors of a Discrete-time Covariance Matrix 134
10.9.2 The Conditional Distribution of the Brownian Bridge 137

11 Greeks 139
11.1 Importance Of Greeks 139
11.2 An Up-Out-Call Option 139
11.3 Finite Differencing with Path Recycling 140
11.4 Finite Differencing with Importance Sampling 143
11.5 Pathwise Differentiation 144
11.6 The Likelihood Ratio Method 145
11.7 Comparative Figures 147
11.8 Summary 153
11.9 Appendix 153
11.9.1 The Likelihood Ratio Formula for Vega 153
11.9.2 The Likelihood Ratio Formula for Rho 156

12 Monte Carlo in the BGM/J Framework 159
12.1 The Brace–Gatarek–Musiela/Jamshidian Market Model 159
12.2 Factorisation 161
12.3 Bermudan Swaptions 163
12.4 Calibration to European Swaptions 163
12.5 The Predictor–Corrector Scheme 169
12.6 Heuristics of the Exercise Boundary 171
12.7 Exercise Boundary Parametrisation 174
12.8 The Algorithm 176
| Contents |
|--------------------------|----------|
| 12.9 Numerical Results | 177 |
| 12.10 Summary | 182 |
| **13 Non-recombining Trees** | **183** |
| 13.1 Introduction | 183 |
| 13.2 Evolving the Forward Rates | 184 |
| 13.3 Optimal Simplex Alignment | 187 |
| 13.4 Implementation | 190 |
| 13.5 Convergence Performance | 191 |
| 13.6 Variance Matching | 192 |
| 13.7 Exact Martingale Conditioning | 195 |
| 13.8 Clustering | 196 |
| 13.9 A Simple Example | 199 |
| 13.10 Summary | 200 |
| **14 Miscellanea** | **201** |
| 14.1 Interpolation of the Term Structure of Implied Volatility | 201 |
| 14.2 Watch Your CPU Usage | 202 |
| 14.3 Numerical Overflow and Underflow | 205 |
| 14.4 A Single Number or a Convergence Diagram? | 205 |
| 14.5 Embedded Path Creation | 206 |
| 14.6 How Slow is Exp() ? | 207 |
| 14.7 Parallel Computing And Multi-threading | 209 |

Bibliography

Index