

Paper and Water: A Guide for Conservators

Gerhard Banik
Irene Brucke

With contributions by

Vincent Daniels
Stefan Fischer
D. Steven Keller
Joanna M. Kosek
Remhard Lacher
Anthony W. Smith
Alfred Vendl
GuntherWegele
Paul M. Whitmore

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO
SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Butterworth-Heinemann is an imprint of Elsevier

The printing was financially supported by the former Institute of Paper Conservation (I PC), today part of Icon and ICCROM. The project 112 693 "Water in Paper" has been funded with support from the European Commission. This publication reflects the views only of the authors, and neither the Commission, nor other donors can be held responsible for any use which may be made of the information contained therein.

ICCROM

THE INSTITUTE OF CONSERVATION

icon

Leonardo da Vinci
^ ^ ^ H Education and Culture

Paper and Water: A Guide for Conservators

Contents		
	Foreword from the perspective of the conservator <i>Kate Colleran</i>	xiv
	Foreword from the perspective of the conservation scientist <i>Jan Wouters</i>	xv
	Introduction <i>Gerhard Banik and Irene Brucke</i>	xvn
	User's Guide	xxm
	Acknowledgements	xxix
1	Relevant Chemistry	1
	<i>Gerhard Banik</i>	
	1.1 Basic principles	2
	1.2 Covalent and ionic bonding	9
	1.3 Electronegativity	12
	1.4 Hydrogen bonding	14
	1.5 Van derWaals forces	16
	1.6 Carbon and glucose	16
	Summary	21
2	Properties of Water	23
	<i>Gerhard Banik</i>	
	2.1 Molecular structure	24
	2.2 Surface tension	27
	2.3 Viscosity	30
	2.4 Volatility	31
	2.5 Aggregate states of water	34

2.6 Dissolution/dissolving ability	36
2.7 Solubility of organic liquids in water	39
2.8 Ionic components in natural water	41
2.9 Hardness of water	43
2.10 Water purification	46
2.11 Purified water in paper conservation	52
Summary	52
Interaction between water molecules (DVD Video 2.1)	
3 Dissociation of Water: Acids and Bases	57
<i>Gerhard Banik</i>	
3.1 Dissociation of water	58
3.2 Acids and bases	61
3.3 The hydronium ion (H_3O^+)	64
3.4 Strength of acids and bases	65
3.5 The pH concept	69
3.6 The pH of salt solutions	73
3.7 Buffer solutions - the carbonate buffer	76
Summary	78
4 Structure and Properties of Dry and Wet Paper	81
<i>Irene Brucke</i>	
4.1 Cellulose structure	83
4.2 States of water absorption in cellulose	87
4.3 Gel and hysteresis properties of cellulose	94
4.4 The structure of dry and wet paper	97
4.5 The porosity of paper	109
4.6 The strength of paper in relation to its moisture content	111
4.7 Using the paper model	113
Summary	115
The structure of paper (DVD Videos 4.1-4.8)	

5 Effect of Pulp Processing on Paper-Water Interactions	121
<i>Irene Brucke</i>	
5.1 The native fibre	122
5.2 Chemical processes	127
5.3 Effect of chemical processing on fibre composition	130
5.4 Effect of chemical processing on fibre porosity	133
5.5 Effect of chemical processing on fibre reactivity	135
5.6 Beating and refining	138
Summary	140
Effect of water on different papers (DVD Videos 5.1-5.5)	
6 Effect of Sizing on Paper-Water Interactions	145
<i>Gerhard Banik, Irene Brucke, Remhard Lacher and Gunther Wegele</i>	
6.1 Sizingtechnologies	146
6.2 Surface sizing with gelatine	150
6.3 Gelatine sizing in relation to paper properties	153
6.4 Internal sizing with rosin	156
6.5 Rosin sizing in relation to paper properties	160
6.6 Internal reactive sizing agents	162
6.7 Reactive sizing in relation to paper properties	164
6.8 Properties of sized paper in general	165
Summary .	168
Effect of water on different types of paper (DVD Videos 6.1-6.7)	
7 Paper Drying in the Manufacturing Process	173
<i>D. Steven Keller</i>	
7.1 Water removal in paper manufacturing	175
7.2 Drying of individual lignocellulosic fibres	184
7.3 Drying of the fibrous network	190
7.4 Network shrinkage from fibre shrinkage	190
7.5 Structural factors that control shrinkage	192

7.6 Drying of the web in papermaking	197
7.7 Historical drying of paper	203
7.8 Rewetting and humidity response of paper	205
Summary	211
Formation of the paper structure (DVD Videos 7.1-7.3)	
8 Paper Ageing and the Influence of Water	219
<i>Paul M. Whitmore</i>	
8.1 Major changes in paper with ageing	221
8.2 Cellulose chain-breaking reactions	223
8.3 Discolouration reactions	238
8.4 The study of paper ageing	240
8.5 Stabilization of paper	246
Summary	248
9 The Introduction of Water into Paper	255
<i>Irene Brucke and Gerhard Banik</i>	
9.1 Humidity	257
9.2 Humidity and paper	261
9.3 Liquid water and paper	264
9.4 Water transport mechanisms in paper	268
9.5 Paper in humid environments	271
9.6 Water introduction as conservation treatment	273
9.7 Paper and liquid water plus wetting agents	280
9.8 Factors influencing water absorbency of paper objects	282
Summary	285
Response of paper to wetting treatments (DVD Videos 9.1-9.9)	
10 The Rate of Discolouration Removal from Paper by Washing	289
<i>Vincent Daniels</i>	
10.1 The nature of discoloured material in paper	291
10.2 Paper washing compared with textile washing	292

10.3 Diffusion and mass transfer	294
10.4 Moving discolouration out of paper	297
10.5 Effect of paper thickness on washing rate	299
10.6 Effect of treatment duration on washing rate	301
10.7 Effect of temperature on washing rate	304
10.8 Effect of previous moisture content on washing rate	306
10.9 Effect of surfactants on washing rate	307
10.10 Effect of deacidification on washing rate	309
Summary	310
Methods of controlling water flow (DVD Videos 10.1-10.4)	
11 Washing Paper in Conservation	313
<i>Joanna M. Kosek</i>	
11.1 Background	315
11.2 Washing principles	317
11.3 Preparatory considerations	320
11.4 Washing treatments	322
11.5 Immersion washing	322
11.6 Floatwashing	324
11.7 Blotter washing	329
11.8 Suction table washing	330
11.9 Combining washing methods	333
11.10 Treatment evaluation	334
Summary	335
Methods of directing water flow (DVD Videos 11.1 -11.4)	
12 Aqueous Deacidification of Paper	341
<i>Anthony W. Smith</i>	
12.1 Ion-exchange properties of fibres	343
12.2 Deacidification principles	347
12.3 The chemistry of deacidification solutions	351
12.4 The alkalinity of deacidification solutions	373
12.5 Alkaline reserve	375

12.6 Protective effects of alkaline earth carbonates	377
12.7 Specification of aqueous deacidification processes	379
12.8 Practical considerations	380
12.9 Evaluating deacidification treatment	382
Summary	384
The ion-exchange capacity of oxidized cellulose	
Neutralization of carboxyl groups (DVD Videos 12.1 and 12.2)	
13 Drying Paper in Conservation Practice	389
<i>Irene Brucke and Gerhard Banik</i>	
13.1 Water removal in papermaking and conservation	392
13.2 Principles of drying	393
13.3 Effects of free air-drying on sheet dimensional qualities	398
13.4 Preparatory considerations before conservation drying	404
13.5 Restraint-free or air-drying	406
13.6 Modified air-drying	407
13.7 Restraint-drying by pressure in a stack	408
13.8 Restraint-drying by pressure in a stack enforced by friction	410
13.9 Lateral restraint-drying	411
13.10 Restraint-drying by pressure in a stack under enforced airflow	411
13.11 Considerations for drying paper objects	413
Summary	414
Drying of albumen photograph (DVD Video 13.1)	
14 Aqueous Treatment in Context	419
<i>Irene Brucke</i>	
14.1 Considering risk and benefit of aqueous treatment	420
14.2 Focus on risk factors	423
14.3 Consideration of scientific principles in treatment decision-making	427
14.4 Strategizing conservation decision-making	431

Appendices	
1. Physical quantities and SI units	437
2. Tables of conversion	440
3. Measures of concentration	442
4. Periodic table (extract)	446
5. Water activity, chemical reactions and biological growth	447
6. Making proton migration and transfer visible	451
7. Simplified hygrometric chart	453
8. Hygrometric chart	454
9. Relative humidity (RH) over selected salt solutions	455
10. Setting up workshops	456
11. Suggested seminar schedule	459
12. Suggested seminar readings	461
13. Laboratory safety	464
14. Suggested seminar experiments	465
15. Methods for measuring the pH of paper	471
16. Methods for testing the water absorption and wetting of paper	476
17. Identification of the reducing properties of deteriorated cellulose	478
18. Test for lignin	482
19. Tests for paper additives	484
 Glossary	491
Index	527
About the Authors	539