Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>1 Risk in Perspective</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Risk</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Risk and Randomness</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 Financial Risk</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3 Measurement and Management</td>
<td>3</td>
</tr>
<tr>
<td>1.2 A Brief History of Risk Management</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1 From Babylon to Wall Street</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2 The Road to Regulation</td>
<td>8</td>
</tr>
<tr>
<td>1.3 The New Regulatory Framework</td>
<td>10</td>
</tr>
<tr>
<td>1.3.1 Basel II</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2 Solvency 2</td>
<td>13</td>
</tr>
<tr>
<td>1.4 Why Manage Financial Risk?</td>
<td>15</td>
</tr>
<tr>
<td>1.4.1 A Societal View</td>
<td>15</td>
</tr>
<tr>
<td>1.4.2 The Shareholder’s View</td>
<td>16</td>
</tr>
<tr>
<td>1.4.3 Economic Capital</td>
<td>18</td>
</tr>
<tr>
<td>1.5 Quantitative Risk Management</td>
<td>19</td>
</tr>
<tr>
<td>1.5.1 The Nature of the Challenge</td>
<td>19</td>
</tr>
<tr>
<td>1.5.2 QRM for the Future</td>
<td>22</td>
</tr>
<tr>
<td>2 Basic Concepts in Risk Management</td>
<td>25</td>
</tr>
<tr>
<td>2.1 Risk Factors and Loss Distributions</td>
<td>25</td>
</tr>
<tr>
<td>2.1.1 General Definitions</td>
<td>25</td>
</tr>
<tr>
<td>2.1.2 Conditional and Unconditional Loss Distribution</td>
<td>28</td>
</tr>
<tr>
<td>2.1.3 Mapping of Risks: Some Examples</td>
<td>29</td>
</tr>
<tr>
<td>2.2 Risk Measurement</td>
<td>34</td>
</tr>
<tr>
<td>2.2.1 Approaches to Risk Measurement</td>
<td>34</td>
</tr>
<tr>
<td>2.2.2 Value-at-Risk</td>
<td>37</td>
</tr>
<tr>
<td>2.2.3 Further Comments on VaR</td>
<td>40</td>
</tr>
<tr>
<td>2.2.4 Other Risk Measures Based on Loss Distributions</td>
<td>43</td>
</tr>
<tr>
<td>2.3 Standard Methods for Market Risks</td>
<td>48</td>
</tr>
<tr>
<td>2.3.1 Variance-Covariance Method</td>
<td>48</td>
</tr>
<tr>
<td>2.3.2 Historical Simulation</td>
<td>50</td>
</tr>
<tr>
<td>2.3.3 Monte Carlo</td>
<td>52</td>
</tr>
<tr>
<td>2.3.4 Losses over Several Periods and Scaling</td>
<td>53</td>
</tr>
<tr>
<td>2.3.5 Backtesting</td>
<td>55</td>
</tr>
<tr>
<td>2.3.6 An Illustrative Example</td>
<td>55</td>
</tr>
</tbody>
</table>
3 Multivariate Models 61

3.1 Basics of Multivariate Modelling 61
3.1.1 Random Vectors and Their Distributions 62
3.1.2 Standard Estimators of Covariance and Correlation 64
3.1.3 The Multivariate Normal Distribution 66
3.1.4 Testing Normality and Multivariate Normality 68

3.2 Normal Mixture Distributions 73
3.2.1 Normal Variance Mixtures 73
3.2.2 Normal Mean-Variance Mixtures 77
3.2.3 Generalized Hyperbolic Distributions 78
3.2.4 Fitting Generalized Hyperbolic Distributions to Data 81
3.2.5 Empirical Examples 84

3.3 Spherical and Elliptical Distributions 89
3.3.1 Spherical Distributions 89
3.3.2 Elliptical Distributions 93
3.3.3 Properties of Elliptical Distributions 95
3.3.4 Estimating Dispersion and Correlation 96
3.3.5 Testing for Elliptical Symmetry 99

3.4 Dimension Reduction Techniques 103
3.4.1 Factor Models 103
3.4.2 Statistical Calibration Strategies 105
3.4.3 Regression Analysis of Factor Models 106
3.4.4 Principal Component Analysis 109

4 Financial Time Series 116

4.1 Empirical Analyses of Financial Time Series 117
4.1.1 Stylized Facts 117
4.1.2 Multivariate Stylized Facts 123

4.2 Fundamentals of Time Series Analysis 125
4.2.1 Basic Definitions 125
4.2.2 ARMA Processes 128
4.2.3 Analysis in the Time Domain 132
4.2.4 Statistical Analysis of Time Series 134
4.2.5 Prediction 136

4.3 GARCH Models for Changing Volatility 139
4.3.1 ARCH Processes 139
4.3.2 GARCH Processes 145
4.3.3 Simple Extensions of the GARCH Model 148
4.3.4 Fitting GARCH Models to Data 150

4.4 Volatility Models and Risk Estimation 158
4.4.1 Volatility Forecasting 158
4.4.2 Conditional Risk Measurement 160
4.4.3 Backtesting 162

4.5 Fundamentals of Multivariate Time Series 164
4.5.1 Basic Definitions 164
4.5.2 Analysis in the Time Domain 166
4.5.3 Multivariate ARMA Processes 168

4.6 Multivariate GARCH Processes 170
4.6.1 General Structure of Models 170
4.6.2 Models for Conditional Correlation 172
4.6.3 Models for Conditional Covariance 175
4.6.4 Fitting Multivariate GARCH Models 178
4.6.5 Dimension Reduction in MGARCH 179
4.6.6 MGARCH and Conditional Risk Measurement 182

5 Copulas and Dependence 184
5.1 Copulas 184
5.1.1 Basic Properties 185
5.1.2 Examples of Copulas 189
5.1.3 Meta Distributions 192
5.1.4 Simulation of Copulas and Meta Distributions 193
5.1.5 Further Properties of Copulas 195
5.1.6 Perfect Dependence 199
5.2 Dependence Measures 201
5.2.1 Linear Correlation 201
5.2.2 Rank Correlation 206
5.2.3 Coefficients of Tail Dependence 208
5.3 Normal Mixture Copulas 210
5.3.1 Tail Dependence 210
5.3.2 Rank Correlations 215
5.3.3 Skewed Normal Mixture Copulas 217
5.3.4 Grouped Normal Mixture Copulas 218
5.4 Archimedean Copulas 220
5.4.1 Bivariate Archimedean Copulas 220
5.4.2 Multivariate Archimedean Copulas 222
5.4.3 Non-exchangeable Archimedean Copulas 224
5.5 Fitting Copulas to Data 228
5.5.1 Method-of-Moments using Rank Correlation 229
5.5.2 Forming a Pseudo-Sample from the Copula 232
5.5.3 Maximum Likelihood Estimation 234

6 Aggregate Risk 238
6.1 Coherent Measures of Risk 238
6.1.1 The Axioms of Coherence 238
6.1.2 Value-at-Risk 241
6.1.3 Coherent Risk Measures Based on Loss Distributions 243
6.1.4 Coherent Risk Measures as Generalized Scenarios 244
6.1.5 Mean-VaR Portfolio Optimization 246
6.2 Bounds for Aggregate Risks 248
6.2.1 The General Frechet Problem 248
6.2.2 The Case of VaR 250
6.3 Capital Allocation 256
6.3.1 The Allocation Problem 256
6.3.2 The Euler Principle and Examples 257
6.3.3 Economic Justification of the Euler Principle 261

7 Extreme Value Theory 264
7.1 Maxima 264
7.1.1 Generalized Extreme Value Distribution 265
7.1.2 Maximum Domains of Attraction 267
7.1.3 Maxima of Strictly Stationary Time Series 270
7.1.4 The Block Maxima Method 271
Contents

7.2 Threshold Exceedances
- 7.2.1 Generalized Pareto Distribution 275
- 7.2.2 Modelling Excess Losses 278
- 7.2.3 Modelling Tails and Measures of Tail Risk 282
- 7.2.4 The Hill Method 286
- 7.2.5 Simulation Study of EVT Quantile Estimators 289
- 7.2.6 Conditional EVT for Financial Time Series 291

7.3 Tails of Specific Models
- 7.3.1 Domain of Attraction of Frechet Distribution 293
- 7.3.2 Domain of Attraction of Gumbel Distribution 294
- 7.3.3 Mixture Models 295

7.4 Point Process Models
- 7.4.1 Threshold Exceedances for Strict White Noise 299
- 7.4.2 The POT Model 301
- 7.4.3 Self-Exciting Processes 306
- 7.4.4 A Self-Exciting POT Model 307

7.5 Multivariate Maxima
- 7.5.1 Multivariate Extreme Value Copulas 311
- 7.5.2 Copulas for Multivariate Minima 314
- 7.5.3 Copula Domains of Attraction 314
- 7.5.4 Modelling Multivariate Block Maxima 317

7.6 Multivariate Threshold Exceedances
- 7.6.1 Threshold Models Using EV Copulas 319
- 7.6.2 Fitting a Multivariate Tail Model 320
- 7.6.3 Threshold Copulas and Their Limits 322

Credit Risk Management

8.1 Introduction to Credit Risk Modelling
- 8.1.1 Credit Risk Models 327
- 8.1.2 The Nature of the Challenge 329

8.2 Structural Models of Default
- 8.2.1 The Merton Model 331
- 8.2.2 Pricing in Merton's Model 332
- 8.2.3 The KMV Model 336
- 8.2.4 Models Based on Credit Migration 338
- 8.2.5 Multivariate Firm-Value Models 342

8.3 Threshold Models
- 8.3.1 Notation for One-Period Portfolio Models 344
- 8.3.2 Threshold Models and Copulas 345
- 8.3.3 Industry Examples 347
- 8.3.4 Models Based on Alternative Copulas 348
- 8.3.5 Model Risk Issues 350

8.4 The Mixture Model Approach
- 8.4.1 One-Factor Bernoulli Mixture Models 353
- 8.4.2 CreditRisk+ 356
- 8.4.3 Asymptotics for Large Portfolios 357
- 8.4.4 Threshold Models as Mixture Models 359
- 8.4.5 Model-Theoretic Aspects of Basel II 362
- 8.4.6 Model Risk Issues 364

8.5 Monte Carlo Methods
- 8.5.1 Basics of Importance Sampling 367
- 8.5.2 Application to Bernoulli-Mixture Models 370
8.6 Statistical Inference for Mixture Models
 8.6.1 Motivation
 8.6.2 Exchangeable Bernoulli-Mixture Models
 8.6.3 Mixture Models as GLMMs
 8.6.4 One-Factor Model with Rating Effect

9 Dynamic Credit Risk Models
 9.1 Credit Derivatives
 9.1.1 Overview
 9.1.2 Single-Name Credit Derivatives
 9.1.3 Portfolio Credit Derivatives
 9.2 Mathematical Tools
 9.2.1 Random Times and Hazard Rates
 9.2.2 Modelling Additional Information
 9.2.3 Doubly Stochastic Random Times
 9.3 Financial and Actuarial Pricing of Credit Risk
 9.3.1 Physical and Risk-Neutral Probability Measure
 9.3.2 Risk-Neutral Pricing and Market Completeness
 9.3.3 Martingale Modelling
 9.3.4 The Actuarial Approach to Credit Risk Pricing
 9.4 Pricing with Doubly Stochastic Default Times
 9.4.1 Recovery Payments of Corporate Bonds
 9.4.2 The Model
 9.4.3 Pricing Formulas
 9.4.4 Applications
 9.5 Affine Models
 9.5.1 Basic Results
 9.5.2 The CIR Square-Root Diffusion
 9.5.3 Extensions
 9.6 Conditionally Independent Defaults
 9.6.1 Reduced-Form Models for Portfolio Credit Risk
 9.6.2 Conditionally Independent Default Times
 9.6.3 Examples and Applications
 9.7 Copula Models
 9.7.1 Definition and General Properties
 9.7.2 Factor Copula Models
 9.8 Default Contagion in Reduced-Form Models
 9.8.1 Default Contagion and Default Dependence
 9.8.2 Information-Based Default Contagion
 9.8.3 Interacting Intensities

10 Operational Risk and Insurance Analytics
 10.1 Operational Risk in Perspective
 10.1.1 A New Risk Class
 10.1.2 The Elementary Approaches
 10.1.3 Advanced Measurement Approaches
 10.1.4 Operational Loss Data
 10.2 Elements of Insurance Analytics
 10.2.1 The Case for Actuarial Methodology
 10.2.2 The Total Loss Amount
 10.2.3 Approximations and Panjer Recursion
 10.2.4 Poisson Mixtures