Microcontrollers: From Assembly Language to C Using the PIC24 Family

Robert Reese

J.W. Bruce

Bryan A. Jones
Contents

Acknowledgments vi
About the Authors vii
Introduction xxi

Part I Digital Logic Review and Computer Architecture Fundamentals 1
 1 Number System and Digital Logic Review 3
 Binary Data 4
 Unsigned Number Conversion 6
 Hex to Binary, Binary to Hex 7
 Binary and Hex Arithmetic 8
 Binary and Hex Addition 8
 Binary and Hex Subtraction 9
 Shift Operations 11
 Combinational Logic Functions 12
 Logic Gate CMOS Implementations 15
 Combinational Building Blocks 18
 The Multiplexer 18
 The Adder 19
 The Incrementer 20
 The Shifter 21
 Memory 21
 Sequential Logic 22
 The Clock Signal 23
 The D Flip-Flop 24
Contents

Sequential Building Blocks 26
The Register 26
The Counter 27
The Shift Register 28
Encoding Character Data 28
Summary 30
Review Problems 30

2 The Stored Program Machine 33

Problem Solving the Digital Way 34
Finite State Machine Design 35
 Finite State Machine Implementation 36
A Stored Program Machine 40
 Instruction Set Design and Assembly Language 40
 Hardware Design 44
Modern Computers 48
Summary 48
Review Problems 48

Part II PIC24 uC Assembly Language Programming 51

3 Introduction to the PIC24 Microcontroller Family 53

Introduction to Microprocessors and Microcontrollers 53
The PIC24 Microcontroller Family 55
 Program Memory Organization 56
 Data Memory Organization 57
 Arrangement of Multibyte Values in Data Memory 59
Data Transfer Instructions and Addressing Modes 61
 Register Direct Addressing 62
 File Register Addressing 65
 WREG—The Default Working Register 66
 Immediate Addressing 68
 Indirect Addressing 69
 Instruction Set Regularity 71
4 Unsigned 8/16-Bit Arithmetic, Logical, and Conditional Operations

 Bitwise Logical Operations, Bit Operations

 The Status Register

 Shift and Rotate Operations

 Mixed 8-Bit/16-Bit Operations, Compound Operations

 Working Register Usage

 LSB, MSB Operations

 Conditional Execution Using Bit Tests

 Unsigned Conditional Tests

 Conditional Tests in C

 Zero, Non-Zero Conditional Tests

 Bit Tests

 Equality, Inequality Conditional Tests

 Conditional Tests for >=, >, <, <=

 Comparison and Unsigned Branch Instructions

 Complex Conditional Expressions

 Looping

 Summary

 Review Problems
<table>
<thead>
<tr>
<th>ASCII-Hex to Binary</th>
<th>233</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII-Decimal to Binary</td>
<td>235</td>
</tr>
<tr>
<td>Summary</td>
<td>235</td>
</tr>
<tr>
<td>Review Problems</td>
<td>236</td>
</tr>
</tbody>
</table>

Part III PIC24 uC Interfacing Using the C Language 239

8 The PIC24HJ32GP202: System Startup and Parallel Port I/O 241

High-Level Languages versus Assembly Language	242
C Compilation for the PIC24 uC	244
Special Function Registers and Bit References	245
PIC24 Compiler Runtime Code, Variable Qualifiers/Attributes	249
C Macros, Inline Functions	250
Conditional Compilation	251

PIC24HJ32GP202 Startup Schematic 252

Startup Schematic: Power	254
Startup Schematic: Reset	256
Startup Schematic: PC Serial Communication Link	257
Startup Schematic: In-circuit Serial Programming	257
Startup Schematic: Application Components	258

ledflash.c—The First C Program for PIC24HJ32GP202 Startup 258

Clock Configuration	259
Flashing the LED	259
An Improved LED Flash Program	260

echo.c—Testing the Serial Link 262

| asm_echo.s—Implementing echo in Assembly | 265 |

Datasheet Reading—A Critical Skill 266

Configuration Bits	267
Clock Generation	268
Setting Clock Options Using C	272
Power-on Reset Behavior and Reset Sources	277
Watchdog Timer, Sleep, Idle, Doze	280
The reset.c Test Program	283
9 Interrupts and a First Look at Timers
INTx External Interrupts, Remappable Pins 332
 Switch Inputs and Change Notification/INTx Interrupts 337
Periodic Timer Interrupts 337
 Timer Macros and Support Functions 340
Square Wave Generation 342
Input Sampling 344
 Filtering Noisy Inputs 346
LED/Switch I/O and Semaphores 349
A Rotary Encoder Interface 352
A Keypad Interface 356
On Writing and Debugging ISRs 361
Summary 362
Review Problems 362

10 Asynchronous and Synchronous Serial I/O 367
 I/O Channel Basics 368
Synchronous, Asynchronous Serial I/O 370
 Asynchronous Serial I/O Using NRZ Encoding 371
THE PIC24 UART 376
 UARTx Transmit Operation 379
 UARTx Receive Operation 380
 Baud Rate Configuration 381
Using the PIC24 UART with C 383
<stdio.h> Library Functions 385
Interrupt-Driven I/O with the PIC24 UART 386
 Interrupt-Driven UART Receive 386
 Interrupt-Driven UART Transmit 391
The RS-232 Standard 395
The Serial Peripheral Interface (SPI) 396
SPI Example: The MCP41xxx Digital Potentiometer 402
SPI Example: PIC24 uC Master to DS1722 Thermometer 405
SPI Example: PIC24 uC Master to PIC24 uC Slave 409
11 Data Conversion 441
Data Conversion Basics 441
Analog-to-Digital Conversion 443
 Counter-Ramp ADC 446
 Successive Approximation ADC 448
 Flash ADC 450
 Sample and Hold Amplifiers 452
The PIC24 Analog-to-Digital Converter 454
 PIC24 ADC Configuration 456
 PIC24 ADC Operation: Manual 464
 PIC24 ADC Operation: Automatic and Scanning with Interrupts 467
 PIC24 ADC Operation: Automatic Using Timers 476
 PIC24 ADC Operation: Recap 481
Digital-to-Analog Conversion 482
 Flash DACs 483
 Resistor String Flash DACs 483
 R-2R Resistor Ladder Flash DAC 485
External Digital-to-Analog Converter Examples 492
 DAC Example: The Maxim548A 493
 DAC Example: The Maxim5353 496
 DAC Example: The Maxim518 499
Summary 504
Review Problems 505
12 Timers

Pulse Width Measurement 507
Using a 32-bit Timer 510
Pulse Width, Period Measurement Using Input Capture 514
The Input Capture Module 514
Pulse Width Measurement Using Input Capture 516
Period Measurement Using Input Capture 520
Application: Using Capture Mode for an Infrared Decoder 521
The Output Compare Module 529
Square Wave Generation 531
Pulse Width Modulation 533
A PWM Example 534
PWM Application: DC Motor Speed Control and Servo Control 535
DC Motor Speed Control 535
Hobby Servo Control 536
PWM Control of Multiple Servos 539
A PWM DAC 542
Time Keeping Using Timer 1, RTCC 545
The Real-Time Clock Calendar Module 546
Summary 550
Review Problems 550

Part IV Advanced Interfacing and Programming Topics

13 Advanced Hardware Topics 555
Direct Memory Access 556
Using the PIC24 uC as an PC Slave 563
Bus Arbitration for the PC Bus 566
Reverse String Revisited 569
The Controller Area Network (CAN) 571
The PIC24 ECAN™ Module 576
Using an ECAN RX FIFO 584
Using an Extended Data Frame 586
The Universal Serial Bus (USB) 586
Run-Time Self-Programming 590
 A Sample Flash Application 596
Comparator 599
Parallel Master Port and CRC Generator 603
Summary 605
Review Problems 605

14 Operating Systems for Embedded Systems 607
 Operating System Concepts 608
 Tasks 612
 Multitasking and Schedulers 613
 Semaphores and Inter-task Coordination 617
 OS Services 623
Embedded Systems Operating System for the Microchip PIC24 uC 624
 Overview 626
User Tasks 627
Our First ESOS Program 631
ESOS Communication Services 633
ESOS Timer Services 637
ESOS Semaphore Services 640
ESOS User Flags 644
ESOS Child Tasks 645
ESOS Interrupt Services 649
Design: Adding an ESOS Service for PC 653
 PC Operations Under ESOS 654
 PC Transactions Under ESOS 656
 Application Using the ESOS PC Service 660
Summary 663
Review Problems 663
 Suggested Project Problems 663
Part V Capstone Examples 665

15 Capstone Projects 667

- Design of an Audio Record/Playback System 667
- Implementation of an Audio Record/Playback System 670
 - Audio Data Compression 672
 - Audio Application ISR and Configuration 673
 - An MP3 to FM Radio Playback System 678
- A Solder Reflow Oven 679
 - Solder Reflow Background 679
 - High Temperature Sensing 681
 - AC Power Control 681
 - Reflow Oven Control Implementation 683
- A Small, Autonomous Robot 693
- Other Microcontroller Families from Microchip 701
 - A Brief Survey of Non-PIC Microcontrollers 703
- Summary 707
 - Suggested Survey Topics 707

Appendix A PIC24 Architecture and Instruction Set Summary 709

Appendix B Software Tools Overview 721

Appendix C Suggested Laboratory Exercises 733

Appendix D Notes on the C Language and the Book’s PIC24 Library Functions 765

Appendix E Circuits 001 779

Appendix F References 787

Appendix G Problem Solutions 793

Index 821