Fourier Analysis and Imaging

Ronald Bracewell

L.M. Terman Professor of Electrical Engineering Emeritus
Stanford University
Stanford, California

4u Springer
Contents

PREFACE xiii

1 INTRODUCTION 1

Summary of the Chapters 3
Notation 10
Teaching a Course from This Book 13
The Problems 13
Aspects of Imaging 15
Computer Code 17
Literature References 17
Recommendation 19

THE IMAGE PLANE 20

Modes of Representation 21
Some Properties of a Function of Two Variables 40
Projection of Solid Objects 43
Image Distortion 50
Operations in the Image Plane 67
Binary Images 77
Operations on Digital Images 80
Reflectance Distribution 83
Data Compression 89
Summary 91
Appendix: A Contour Plot Program 91
Literature Cited 95
Further Reading 97
Problems 97

TWO-DIMENSIONAL IMPULSE FUNCTIONS 111

The Two-Dimensional Point Impulse 111
Rules for Interpreting Delta Notation 115
Generalized Functions 117
The Shah Functions III and \(\hat{\delta} \) 117
Line Impulses 119
Regular Impulse Patterns 122
Interpretation of Rectangle Function \(\text{off}(x) \) 123
Interpretation of Rectangle Function of \(f(x,y) \) 125
General Rule for Line Deltas 125
The Ring Impulse 128
Impulse Function of \(f(x,y) \) 130
Sifting Property 131
Derivatives of Impulses 133
Summary 135
Literature Cited 135
Problems 136

THE TWO-DIMENSIONAL FOURIER TRANSFORM 140

One Dimension 141
The Fourier Component in Two Dimensions 141
Three or More Dimensions 143
Vector Form of Transform 143
The Corrugation Viewpoint 144
Examples of Transform Pairs 147
Theorems for Two-Dimensional Fourier Transforms 154
The Two-Dimensional Hartley Transform 166
Theorems for the Hartley Transform 166
Contents

Discrete Transforms 167
Summary 168
Literature Cited 169
Further Reading 169
Problems 169

TWO-DIMENSIONAL CONVOLUTION 174

Convolution Defined 176
Cross-Correlation Defined 179
Feature Detection by Matched Filtering 180
Autocorrelation Defined 181
Understanding Autocorrelation 183
Cross-Correlation Islands and Dilation 187
Lazy Pyramid and Chinese Hat Function 187
Central Value and Volume of Autocorrelation 192
The Convolution Sum 193
Computing the Convolution 195
Digital Smoothing 196
Matrix Product Notation 196
Summary 199
Literature Cited 200
Problems 200

6 THE TWO-DIMENSIONAL CONVOLUTION THEOREM 204

Convolution Theorem 206
An Instrumental Caution 207
Point Response and Transfer Function 208
Autocorrelation Theorem 208
Cross-Correlation Theorem 209
Factorization and Separation 210
Convolution with the Hartley Transform 211
Summary 214
Problems 215

SAMPLING AND INTERPOLATION IN TWO DIMENSIONS 222

What is a Sample? 223
Sampling at a Point 224
Sampling on a Point Pattern, and the Associated Transfer Function 224
Sampling Along a Line 227
Curvilinear Sampling 227
The Shah Function 228
Fourier Transform of the Shah Function 229
Other Patterns of Sampling 230
Factoring 234
The Two-Dimensional Sampling Theorem 235
Undersampling 240
Aliasing 241
Circular Cutoff 243
Double-Rectangle Pass Band 245
Discrete Aspect of Sampling 246
Interpolating Between Samples 247
Interlaced Sampling 254
Appendix: The Two-Dimensional Fourier Transform of the Shah Function 257
Literature Cited 259
Problems 260

DIGITAL OPERATIONS

Smoothing 267
Nonconvolutional Smoothing 271
Trend Reduction 273
Sharpening 274
What is a Digital Filter? 276
Guard Zone 276
Transform Aspect of Smoothing Operator 277
Finite Impulse Response (FIR) 278
Special Filters 279
Densifying 283
The Arbitrary Operator 284
Derivatives 285
The Laplacian Operator 287
Projection as a Digital Operation 287
Moire Patterns 290
Functions of an Image 300
11 DIFFRACTION THEORY OF SENSORS AND RADIATORS

The Concept of Aperture Distribution 403
Source Pair and Wave Pair 404
Two-Dimensional Apertures 409
Rectangular Aperture 409
Example of Circular Aperture 410
Duality 411
The Thin Lens 412
What Happens at a Focus? 416
Shadow of a Straight Edge 420
Fresnel Diffraction in General 425
Literature Cited 427
Problems 427

12 APERTURE SYNTHESIS AND INTERFEROMETRY 430

Image Extraction from a Field 430
Incoherent Radiation Source 431
Field of Incoherent Source 432
Correlation in the Field of an Incoherent Source 435
Visibility 438
Measurement of Coherence 439
Notation 440
Interferometers 441
Radio Interferometers 443
Rationale Behind Two-Element Interferometer 445
Aperture Synthesis (Indirect Imaging) 447
Literature Cited 449
Problems 450

13 RESTORATION 453

Restoration by Successive Substitutions 454
Running Means 456
Eddington's Formula 458
Finite Differences 460
Finite Difference Formula 461
Chord Construction 462
The Principal Solution 464
Contents

Finite Differencing in Two Dimensions 468
Restoration in the Presence of Errors 472
The Additive Noise Signal 474
Determination of the Real Restoring Function 477
Determination of the Complex Restoring Function 479
Some Practical Remarks 479
Artificial Sharpening 481
Antidiffusion 482
Nonlinear Methods 485
Restoring Binary Images 485
CLEAN 485
Maximum Entropy 486
Literature Cited 487
Problems 489

14 THE PROJECTION-SLICE THEOREM 493

Circular Symmetry Reviewed 494
The Abel-Fourier-Hankel Cycle 495
The Projection-Slice Theorem 498
Literature Cited 501
Problems 503

15 COMPUTED TOMOGRAPHY 505

Working from Projections 506
An X-Ray Scanner 508
Fourier Approach to Computed Tomography 510
Back-Projection Methods 512
The Radon Transform 517
The Impulse Response of the Radon Transformation 518
Some Radon Transforms 526
The Eigenfunctions 530
Theorems for the Radon Transform 530
The Radon Boundary 532
Applications 533
Literature Cited 536
Problems 538