
Applying
Domain-Driven
Design and Patterns

With Examples in C# and .NET

Jimmy Nilsson

r\Addison-WesleyT T

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

lontents

the Author xxv

ewords xxvii

:ace: Bridging Gaps xxxi

I: BACKGROUND 1

apter 1: Values to Value 3

Overall Values 3
Architecture Styles to Value 4

Focus on the Model 4
Use Case Focus 5
If You Have a Model Focus, Use the Domain Model Pattern 9
Handle the Database with Care 14
The Impedance Mismatch Between Domain Model and

Relational Database 19
Handle Distribution with Care 24
Messaging Focus 26

Process Ingredients to Value 28
Up-Front Architecture Design 29
Domain-Driven Design 32
Test-Driven Development 33
Refactoring 37
Which Ingredient or a Combination? 39

Continuous Integration 40
The Integration Problem 40
The Solution (Or at Least a Big Step in the Right Direction) 41
Lessons Learned in My Organization 41
Further Information 42

Don't Forget About Operations 42
An Example of When a Mechanism Is Needed 42
Some Examples of Operational Mechanisms 44
It's Not Just Our Fault 45

Summary 45

xv

• CONTENTS

Chapter 2: A Head Start on Patterns 47

A Little Bit About Patterns 48
Why Learn About Patterns? 48
Is There Something to Look Out for Regarding Patterns? 50

Design Patterns 52
An Example: State Pattern 53

Architectural Patterns 60
An Example: Layers 61
Another Example: Domain Model Pattern 62

Design Patterns for Specific Types of Applications 62
An Example: Query Objects 63

Domain Patterns 69
An Example: Factory 70

Summary 75

Chapter 3: TDD and Refactoring 77

Test-Driven Development (TDD) 77
The TDD Flow 78
Time for a Demo 78
Design Effects 85
Problems 88
The Next Phase? 90

Mocks and Stubs 90
A Typical Unit Test 90
Declaration of Independence 91
Working with Difficult Team Members 92
Replacing Collaborators with Testing Stubs 93
Replacing Collaborators with Mock Objects 95
Design Implications 97
Consequences 98
Further Information 98

Refactoring 98
Let's Clean Some Smelly Code 99

Summary 110

CONTENTS

PART II: APPLYING DDD I l l

Chapter 4: A New Default Architecture 113

The Basis of the New Default Architecture 113
From Database Focus to Domain Model Focus 115
More Specifically, a DDD Focus 115
Layering According to DDD 116

A First Sketch 117
Problems/Features for Domain Model Example 118
Dealing with Features One by One 120
The Domain Model to This Point 132

Making a First Attempt at Hooking the UI to the Domain Model. .134
A Basic Goal 134
The Current Focus of the Simple UI 135
List Orders for a Customer 135
Add an Order 136
What Did We Just See? 137

Yet Another Dimension 138
Location of the Domain Model 139
Isolating or Sharing Instances 140
Stateful or Stateless Domain Model Instantiation 141
Complete or Subset Instantiation of the Domain Model 141

Summary 142

Chapter 5: Moving Further with Domain-Driven Design 143

Refining the Domain Model Through Simple TDD
Experimentation 143

Starting with the Creation of Order and OrderFactory 144
Some Domain Logic 148
Second Task: The OrderRepository + OrderNumber 150
Reconstituting an Entity from Persistence: How to Set

Values from the Outside 155
Fetching a List of Orders 160
It's Time to Talk About Entities 161
Back to the Flow Again 162
The Bird's-Eye View 163
Faking the OrderRepository 165
A Few Words About Saving 167

CONTENTS

Total Amount for Each Order 167
Historic Customer Information 172
The Life Cycle of an Instance 175
Type of Order 176
Reference Person for an Order 177

Fluent Interface 179
Summary 180

Chapter 6: Preparing for Infrastructure 181

POCO as a Lifestyle 182
PI for Our Entities and Value Objects 183
PI or not PI? 188
Runtime Versus Compile Time PI 188
The Cost for PI Entitites/Value Objects 189
PI for Our Repositories 191
The Cost for Single-Set Repositories 197

Dealing with Save Scenarios 198
Reasons for the Decisions 199

Let's Build the Fake Mechanism 203
More Features of the Fake Mechanism 204
The Implementation of the Fake 205
Affecting the Unit Tests 207

Database Testing 211
Reset the Database Before Each Test 212
Maintain the State of the Database During the Run 214
Reset the Data Used by a Test Before the Test 214
Don't Forget Your Evolving Schema! 215
Separate the Testing of the Unit from the Testing of the Call

to the Database 216
Querying 219

Single-Set of Query Objects 220
The Cost for Single-Set of Query Objects 222
Where to Locate Queries 224
Aggregates as a Tool Again 225
Specifications as Queries 227
Other Querying Alternatives 228

Summary 228

CONTENTS

Chapter 7: Let the Rules Rule 229

Categorization of Rules 229
Principles for Rules and Their Usage 230

Two-Way Rules Checking: Optional (Possible) to
Check Proactively, Mandatory (and Automatic) to Check
Reactively 230

All States, Even When in Error, Should be Savable 230
Rules Should Be Productive to Use 231
Rules Should Optionally be Configurable so that You Can

Add Custom Rules 231
Rules Should Be Located with State 231
Rules Should be Extremely Testable 232
The System Should Stop You from Getting into a Bad State232

Starting to Create an API 232
Context, Context, Context! 234
Database Constraints 234
Bind Rules to Transitions Related to the Domain or the

Infrastructure? 235
Refining the Principle: "All States, Even when in Error,

Should Be Savable" 236
Requirements for a Basic Rules API Related to Persistence 238

Back to the Found API Problems 239
What Was the Problem? 240
We Allowed an Incorrect Transition 240
What If We Forgot to Check? 241

Focus on Domain-Related Rules 241
Rules that Require Cooperation 243
Locating Set-Based Processing Methods 245
Service-Serviced Validation 247
Trying to Transition when We Shouldn't 247
Business ID 249
Avoiding Problems 252
Aggregates as the Tool Again 253

Extending the API 254
Ask for Rules to Be Used to Set Up UI 254
Make It Possible to Inject Rules 254

Refining the Implementation 255
A Naive Implementation 255
Creating Rule Classes—Leaving the Most Naive Stage 261

•

• CONTENTS

Setting Up a List of Rules 264
Using the List of Rules 264
Dealing with Sublists 265
An API Improvement 266
Customization 267
Providing the Consumer with Metadata 268
A Problem Suitable for a Pattern? 269
What About the Complex Rules? 269

Binding to the Persistence Abstraction 270
Make the Validation Interface Pluggable 270
Alternative Solution for Approaching the Reactive

Validation on Save 271
Reuse Mapping Metadata 272

Generics and Anonymous Methods to the Rescue 273
What Others Have Done 275
Summary 275

PART III: APPLYING P O E A A 277

Chapter 8: Infrastructure for Persistence 279

Requirements on the Persistence Infrastructure 280
Where to Store Data 282

RAM 282
File System 285
Object Database 285
Relational Database 287
One or Several Resource Managers? 287
Other Factors 288
Choose and Move On 288

Approach 288
Custom Manual Code 289
Code Generation of Custom Code 290
Metadata Mapping (Object Relational (O/R) Mapper) 291
Choosing Again 293

Classification 294
Domain Model Style 294
Mapper Style 295
Starting Point 295
API Focus 297

CONTENTS

Query Language Style 297
Advanced Database Support 298
Other Functionality 300

Another Classification: Infrastructure Patterns 301
Metadata Mapping: Type of Metadata 301
Identity Field 302
Foreign Key Mapping 304
Embedded Value 305
Inheritance Solutions 305
Identity Map 306
Unit of Work 307
Lazy Load/Eager Load 307
Controlling Concurrency 308

Summary 309

Chapter 9: Putting NHibernate into Action 311

Why NHibernate? 311
A Short Introduction to NHibernate 312

Preparations 312
Some Mapping Metadata 314
A Tiny API Example 320
Transactions 322

Requirements of the Persistence Infrastructure 323
High Level of Persistent Ignorant 323
Certain Desirable Features for the Life Cycle of the

Persistent Entities 324
Deal Carefully with the Relational Database 326

Classification 328
Domain Model Style 328
Mapper Style 328
Starting Point 329
API Focus 330
Query Language Style 330
Advanced Database Support 331
Other Functionality 333

Another Classification: Infrastructure Patterns 335
Metadata Mapping: Type of Metadata 335
Identity Field 335
Foreign Key Mapping 337

•

CONTENTS

Embedded Value 337
Inheritance Solutions 338
Identity Map 340
Unit of Work 340
Lazy Load/Eager Load 340
Controlling Concurrency 341
Bonus: Validation Hooks 342

NHibernate and DDD 342
Overview of the Assemblies 343
ISession and Repositories 343
ISession, Repositories, and Transactions 344
What Did We Gain? 344

Summary 345

PART IV: WHAT'S NEXT? 347

Chapter 10: Design Techniques to Embrace 349

Context Is King 350
Layers and Partitions 350
Reasons for Partitioning 351
Bounded Context 352
How Do Bounded Contexts and Partitions Relate? 353
Scaling up DDD Projects 353
Why Partition a Domain Model—SO? 353

An Introduction to SOA 354
So What Is SOA Anyway? 354
Why Do We Need SOA? 354
How Is SOA Different? 355
What Is a Service? 355
What Goes in a Service? 356
Where Do the Four Tenets Lead Me? 357
What Is a Service? Take 2 358
The Place of OO in SOA 359
Client-Server and SOA 359
One-Way Asynchronous Messaging 360
How SOA Improves Scalability 361
The Design of a SOA Service 361
How Would a Service Interact with Other Services? 362
SOA and Unavailable Services 365
Complex Messaging Processes 366

CONTENTS

Scaling Services 367
Summary 367

Inversion of Control and Dependency Injection 368
No Object Is an Island 368
Factories, Registries, and Service Locators 370
Constructor Dependency Injection 373
Setter Dependency Injection 376
Inversion of Control 377
Dependency Injection with the Spring.NET Framework 378
Auto-Wiring with PicoContainer.NET 380
Nested Containers 382
Service Locator Versus Dependency Injection 384
Summary 385

Aspect-Oriented Programming (AOP) 386
What Is the Buzz About? 387
AOP Terminology Defined 390
AOP in .NET 391
Summary 404

Summary 405

Chapter 11: Focus on the UI 407

A Prepilogue 407
The Model-View-Controller Pattern 409

Example: Joe's Shoe Shop 410
Simplifying the View Interfaces Through Adapters 416
Decouple the Controller from the View 417
Combining Views/Controllers 417
Is It Worth It? 418

Test-Driving a Web Form 419
Background 419
An Example 419
Domain Model 420
TDD of GUI 421
The Web Form Implementation 427
Summary 429
Mocking with NMock 429

Mapping and Wrapping 431
Mapping and Wrapping 432
Wrapping the Domain Model with the Presentation Model433

