Routing, Flow, and Capacity Design in Communication and Computer Networks

Michal Pioro

Warsaw University of Technology, Warsaw, Poland Lund University, Lund, Sweden

Deepankar Medhi

University of Missouri-Kansas City Kansas City, Missouri, USA

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO MORGAN KAUFMANN PUBLISHERS IS AN IMPRINT OF ELSEVIER

CONTENTS

]	Foreword	х
J	Prefacexx	ci
PARTI I	NTRODUCTORY NETWORK DESIGN]
	CHAPTER! Overview	3
1	L1 A Network Analogy	4
1	1.2 Communication and Computer Networks, and Network	
	Providers	
1	1.3 Notion of Traffic and Traffic Demand	1
	13.1 Traffic in the Internet	
	1.3.2 Traffic in the Telephone Network	
	1.3.3 Demand in the Transport Network	
	1.3.4 Distinction between Traffic and Transport Network	
	1.35 Generic Naming for Demand Volume and Capacity	
	1.4 A Simple Design Example	
	1.5 Notion of Routing and Flows	
-	1.6 Architecture of Networks: Multi-Layer Networks. 2	
-	1.7 Network Management Cycle	7
	1.8 Scope of the Book	1
	1.9 Naming and Numbering Convention	
1.	10 Summary	6
	CHAPIER 2 Network Design Problems—Notation and	
	Illustrations	7
	2.1 A Network Flow Example in Link-Path Formulation	8
	2.2 Node-Link Formulation	
~	2.3 Notions and Notations	5
	2.4 Dimensioning Problems	
	2.5 Shortest-Path Routing	
/	2.6 Fair Networks 6	

Т

Contents

2.7 Topological Design	
2.8 Restoration Design	
2.9 *Multi-Layer Networks Modeling	
2.10 Summary	
Exercises for Chapter 2	
CHAPTER3 Technology-Related Modeling	
Examples	yj
3.1 IP Networks: Intra-Domain Traffic Engineering	
3.2 MPLS Networks: Tunneling Optimization	
3.3 ATM Networks: Virtual Path Design	
3.4 Digital Circuit-Switched Telephone Networks: Sin	gle-
Busy Hour and Multi-Busy Hour Network Dimensi	ioning 86
3.5 SONET/SDH Transport Networks: Capacity and	
Protection Design	
3.6 SONET/SDH Rings: Ring Bandwidth Design	
3.7 WDM Networks: Restoration Design with Optical	
Cross-Connects.	
3.8 IP Over SONET: Combined Two-Layer Design	
3.9 Summary and Further Reading	
Exercises for Chapter 3	

PART II	DESIGN MODELING AND METHODS	103
C	HAPTER 4 Network Design Problem Modeling	10s
4.1	Basic Uncapacitated and Capacitated Design Problems	106
	4.1.1 Uncapacitated Problems	106
	4.1.2 Capacitated Problems	112
	4.1.3 Mixed Problems	115
4.2	2 Routing Restrictions	115
	4.2.1 Path Diversity	116
	4.2.2 Lower Bounds on Non-Zero Flows	117
	4.2.3 Limited Demand Split	
	4.2.4 Integral Flows	
4.3	Non-Linear Link Dimensioning, Cost, and Delay Functions 4.3.1 Modular Links	
	4.3.2 Convex Cost and Delay Functions	

4.3.3 Concave Link Dimensioning Functions	134
4.4 Budget Constraint	
4.5 Incremental NDPs	141
4.6 Extensions of Problem Modeling	
4.6.1 Representing Nodes	
4.6.2 Capabilities of Link-Path Representation	
4.7 Summary and Further Reading	145
Exercises for Chapter 4	148
CHAPTER5 General Optimization Methods for Network	
Design	isi
5.1 Linear Programming	
5.1.1 Basic Facts About LP.	
5.1.2 Duality in LP	
5.1.3 Simplex Method	
5.1.4 Interior Point Methods (1PM)	
5.2 Mixed-Integer Programming	
5.2.1 The Branch-and-Bound (BB) Method.	
5.2.2 The Branch-and-Cut (BC) Method	
5.2.3 The Cutting-Plane Method	
5.2.4 Dynamic Programming.	168
5.3 Stochastic Heuristic Methods	169
5.3.1 Local Search	169
5.3.2 Simulated Annealing (SAN).	170
5.3.3 Evolutionary Algorithm (EA)	172
5.3.4 Simulated Allocation (SAL).	173
5.3.5 Tabu Search (TS)	
5.3.6 Other Methods	177
5.4 LP Decomposition Methods	178
5.4.1 Lagrangian Relaxation (LR).	
5.4.2 Column Generation Technique for Candidate Path List	104
Augmentation (CPLA). 5.4.3 Benders' Decomposition	
5.5 Gradient Minimization and Other Approaches for	
Convex Programming Problems	
5.5.1 The Flow Deviation (FD) Method.	
5.5.2 The Gradient Projection (GP) Method	
5.5.3 Dual Method	198

Contents

5.6	Special Heuristics for Concave Programming Problems	. 199
	5.6.1 Minimum First Derivative Length Path (MFDLP) Method.	200
	5.6.2 Greedy Descent (GD) Method.	. 201
	5.6.3 Numerical Example.	. 202
5.7	Solving Multi-Commodity Flow Problems	203
	5.7.1 LP Formulations	
	5.7.2 Non-Bifurcated Flows	
	5.7.3 Modular Links	. 205
5.8	Summary and Further Reading	. 206
Exe	ercises for Chapter 5	208
CH	IAPTER 6 Location and Topological Design	.211
6.1	Node Location Problem	212
	6.1.1 Add Heuristic	
6.2	Joint Node Location and Link Connectivity Problem	
	6.2.1 Design Formulation: One-Level	
	6.2.2 Design Formulation: Two-Level	
	6.2.3 Design Results	
6.3	Topological Design	
	6.3.1 Discussion	
	6.3.2 Design with Budget Constraint	
	6.3.3 Design with Extended Objective.	
	6.3.4 Transit Nodes and Links Localization Problem	
	6.3.5 Heuristic Algorithms	
	6.3.6 Numerical Results	
6.4	Lower Bounds for Branch-and-Bound	. 243
	6.4.1 Case: Topological Design with Budget Constraint	. 244
	6.4.2 Case: Transit Node and Link Localization Problem	
6.5	Summary and Further Reading	. 249
Exe	ercises for Chapter 6	. 251
CI	H A P T E R 7 Networks With Shortest-Path Routing	.253
7.1	Shortest-Path Routing Allocation Problem	. 256
	7.1.1 Basic Problem Formulation	
	7.1.2 Adjustments of the Basic Problem	. 260
	7.1.3 Minimum-Hop Routing versus Network Delay: An Illustration.	

7.2	MIP Formulation of the Shortest-Path Routing Allocation		
	Problem and Dual Problems		
	7.2.1 MIP Formulation of the Shortest-Path Routing Allocation		
	Problem		
	7.2.2 Duality and Shortest-Path Routing		
7.3	Heuristic Direct Methods for Determining the Link		
	Metric System		
	7.3.1 Weight Adjustment (WA).		
	7.3.2 Simulated Annealing (SAN)		
	7.3.3 Lagrangian Relaxation (LR)-Based Dual Approach		
7.4	Two-Phase Solution Approach		
	7.4.1 Formulation of the Two-Phase Optimization Problem		
	7.4.2 Solving Phase 1.	278	
	7.4.3 Solving Phase 2		
7.5	Impact Due to Stochastic Approaches	283	
7.6	Impact of Different Link Weight System		
7.7	Impact on Different Performance Measures		
7.8	-		
7.9	Optimization of the Link Metric System under Transient		
	Failures		
7.10			
	Allocation Problem		
7.11			
7.12	Summary and Further Reading		
Exei	rcises for Chapter 7		
CH	IAPTER 8 Fair Networks		
8.1	Notions of Fairness		
	8.1.1 An Example.		
	8.1.2 Max-Min Fairness (MMF) Allocation Problem for Fixed Paths.		
	8.1.3 Proportional Fairness (PF) Allocation Problem for Fixed Paths		
8.2	Design Problems for Max-Min Fairness (MMF)	316	
	8.2.1 Capacitated Problems for Flexible Paths		
	8.2.2 Uncapacitated Problems for Flexible Paths		
	8.2.3 Capacitated Problems With Non-Bifurcated Flows		
8.3	Design Problems for Proportional Fairness (PF)		
	8.3.1 Capacitated Problems for Flexible Paths		
	8.3.2 Uncapacitated Problems With a Budget Constraint	332	

	8.3.3 Uncapacitated Problems With an Extended Objective Function	338
	8.3.4 Numerical Examples	
	8.3.5 Minimum Delay	345
	8.3.6 Non-Bifurcated Flows	
8.4	Summary and Further Reading	
Exe	rcises for Chapter 8	
PART 111 A	DVANCED MODELS	351
CI	H APIE R 9 Restoration and Protection Design	
	of Resilient Networks	. 353
9.1	Failure States, Protection/Restoration Mechanisms, and	
	Diversity	
	9.1.1 Characterization of Failure States	
	9.1.2 Re-Establishment Mechanisms	
	9.1.3 Protection by Diversity	
9.2	Link Capacity Protection/Restoration	
	9.2.1 Link Restoration.	
	9.2.2 Hot-Standby Link Protection.	
9.3	Demand Flow Re-Establishment	
	9.3.1 Unrestricted Reconfiguration	365
	9.3.2 Restricted Reconfiguration	
	9.3.3 *Path Restoration With Situation-Dependent Back-up Paths	
	9.3.4 *Path Restoration With Single Back-up Paths	
	9.3.5 Hot-Standby Path Protection	
9.4	Extensions	377
	9.4.1 Non-Linear Cost/Dimensioning Functions	377
	9.4.2 Modular Link Capacities and/or Integral Flows	377
	9.4.3 Budget Constraint	379
	9.4.4 *Routing Restrictions.	380
	9.4.5 Separating Normal and Protection Capacity	
	9.4.6 Separated Normal and Protection Design	385
9.5	Protection Problems	386
	9.5.1 Link Capacity Restoration	386
	9.5.2 *Path Restoration	
9.6	Applicability of the Protection/Restoration Design Models	
	9.6.1 Dynamic Routing Circuit-Switched Networks9.6.2 Backbone IP, MPLS, and ATM Networks	

9.6.3 Optical Systems, SONET/SDH, and WDM Networks
9.7 Summary and Further Reading
Exercises for Chapter 9
CHAPTER 10 Application of Optimization Techniques
for Protection and Restoration Design
10.1 Path Generation
10.1.1 Unrestricted Reconfiguration
10.1.2 Restricted Reconfiguration
10.1.3 Back-up Path Restoration
10.1.4 Numerical Results
10.2 Lagrangian Relaxation (LR) With Subgradient Maximization
10.2.1 Unrestricted Reconfiguration
10.2.2 Restricted Reconfiguration
10.2.3 Back-up Path Restoration 422
10.3 Benders' Decomposition
10.3.1 Unrestricted Reconfiguration
10.3.2 Restricted Reconfiguration
10.3.3 Numerical Results
10.4 Modular Links
10.5 Stochastic Heuristic Methods
10.5.1 Simulated Allocation (SAL)
10.5.2 Simulated Annealing (SAN)
10.5.3 Evolutionary Algorithm (EA)
10.6 Selected Application: Wavelength Assignment Problem
in WDM Networks
10.6.1 Design Problems
10.6.2 Design Methods
10.6.3 Numerical Results
10.6.4 Remarks
10.7 Summary and Further Reading
Exercises for Chapter 10
CHAPTER]! Multi-Hour and Multi-Time-Period
Network Modeling and Design
11.1 Multi-Hour Design
11.1.1 Illustration of Multi-Hour Dimensioning
11.12 Multi-Hour Dimensioning Models

Contents

11.1.3 Multiple Services Case	464
11.14 Algorithmic Approaches	465
11.1.5 Computational Results.	467
11.1.6 Capacitated Case: Multi-Hour Routing	472
1.2 Multi-Period Design	474
11.2.1 Capacity Planning	475
11.2.2 Multi-Period Flow Routing Problem	180
11.2.3 Model Extensions.	483
11.2.4 Algorithmic Approaches	186
11.2.5 Dynamic Programming	186
11.2.6 A Hybrid Method	487
1.3 Summary and Further Reading	491
Exercises for Chapter 11	193

CHAPTER 12 Multi-Layer Networks: Modeling and

CII		Design
12.1	Desi	gn of Multi-Layer Networks
	12.1.1	Multi-Layer Technology-Related Example
	12.1.2	Network Dimensioning Involving Two Resource Layers
	12.1.3	Allocation Problems with Two Layers of Resources
	12.1.4	Extensions to More 'han Two Layers
	12.1.5	Optimization Methods for Multi-Layer Normal Design Problems513
12.2	Mod	eling of Multi-Layer Networks for Restoration Design
	12.2.1	The Case of Two Reconfigurable Layers
	12.2.2	Restoration Involving Only Reconfiguration of Lower Layer 521
	12.2.3	Restoration Involving Only Reconfiguration of Upper Layer 522
	12.2.4	Extensions
	12.2.5	Optimization Methods for Multi-Layer Restoration Design 524
12.3	Mult	i-Layer Design With Multi-Hour Traffic
	12.3.1	Mixed Two-Resource Layer Design With Multi-Hour Traffic and
		Restoration
	12.3.2	Multi-Layer Design Problems With Multi-Hour, Multi-Service
	1233	Traffic 529 Multi-Layer Design Through Layer Separation 533
		Failure Propagation 534