Contents

Preface xxiii

Part I
The Basics 1

Chapter 1
What Is Data Modeling?

1.1 Introduction 3
1.2 A Data-Centered Perspective 3
1.3 A Simple Example 4
1.4 Design, Choice, and Creativity 6
1.5 Why Is the Data Model Important?
 1.5.1 Leverage 8
 1.5.2 Conciseness 9
 1.5.3 Data Quality 10
 1.5.4 Summary 10
1.6 What Makes a Good Data Model? 10
 1.6.1 Completeness 10
 1.6.2 NonRedundancy 11
 1.6.3 Enforcement of Business Rules 11
 1.6.4 Data Reusability 11
 1.6.5 Stability and Flexibility 12
 1.6.6 Elegance 13
 1.6.7 Communication 14
 1.6.8 Integration 14
 1.6.9 Conflicting Objectives 15
1.7 Performance 15
1.8 Database Design Stages and Deliverables 16
 1.8.1 Conceptual, Logical, and Physical Data Models 16
 1.8.2 The Three-Schema Architecture and Terminology 17
3.5 Relationships 82
3.5.1 Relationship Diagramming Conventions 82
3.5.2 Many-to-Many Relationships 87
3.5.3 One-to-One Relationships 92
3.5.4 Self-Referencing Relationships 93
3.5.5 Relationships Involving Three or More Entity Classes 96
3.5.6 Transferability 98
3.5.7 Dependent and Independent Entity Classes 102
3.5.8 Relationship Names 103

3.6 Attributes 104
3.6.1 Attribute Identification and Definition 104
3.6.2 Primary Keys and the Conceptual Model 105

3.7 Myths and Folklore 105
3.7.1 Entity Classes without Relationships 106
3.7.2 Allowed Combinations of Cardinality and Optionality 106

3.8 Creativity and ER Modeling 106

3.9 Summary 109

• • • Chapter 4

Subtypes and Supertypes 111

4.1 Introduction 111

4.2 Different Levels of Generalization 111

4.3 Rules versus Stability 113

4.4 Using Subtypes and Supertypes 115

4.5 Subtypes and Supertypes as Entity Classes 116
4.5.1 Naming Subtypes 117

4.6 Diagramming Conventions 117
4.6.1 Boxes in Boxes 117
4.6.2 UML Conventions 118
4.6.3 Using Tools That Do Not Support Subtyping 119

4.7 Definitions 119

4.8 Attributes of Supertypes and Subtypes 119

4.9 Nonoverlapping and Exhaustive 120
4.10 Overlapping Subtypes and Roles 123
 4.10.1 Ignoring Real-World Overlaps 123
 4.10.2 Modeling Only the Supertype 124
 4.10.3 Modeling the Roles as Participation in Relationships 124
 4.10.4 Using Role Entity Classes and One-to-One Relationships 125
 4.10.5 Multiple Partitions 126

4.11 Hierarchy of Subtypes 127

4.12 Benefits of Using Subtypes and Supertypes 128
 4.12.1 Creativity 129
 4.12.2 Presentation: Level of Detail 129
 4.12.3 Communication 130
 4.12.4 Input to the Design of Views 132
 4.12.5 Classifying Common Patterns 132
 4.12.6 Divide and Conquer 133

4.13 When Do We Stop Supertyping and Subtyping? 134
 4.13.1 Differences in Identifiers 134
 4.13.2 Different Attribute Groups 135
 4.13.3 Different Relationships 135
 4.13.4 Different Processes 136
 4.13.5 Migration from One Subtype to Another 136
 4.13.6 Communication 136
 4.13.7 Capturing Meaning and Rules 137
 4.13.8 Summary 137

4.14 Generalization of Relationships 138
 4.14.1 Generalizing Several One-to-Many Relationships to a Single Many-to-
 Many Relationship 138
 4.14.2 Generalizing Several One-to-Many Relationships
 to a Single One-to-Many Relationship 139
 4.14.3 Generalizing One-to-Many and Many-to-Many Relationships 141

4.15 Theoretical Background 142

4.16 Summary 143

Chapter 5
Attributes and Columns 145

5.1 Introduction 145

5.2 Attribute Definition 146
5.3 Attribute Disaggregation: One Fact per Attribute 147
 5.3-1 Simple Aggregation 148
 5.3-2 Conflated Codes 150
 5.3-3 Meaningful Ranges 151
 5.3-4 Inappropriate Generalization 151

5.4 Types of Attributes 152
 5.4.1 DBMS Datatypes 152
 5.4.2 The Attribute Taxonomy in Detail 154
 5.4.3 Attribute Domains 158
 5.4.4 Column Datatype and Length Requirements 162
 5.4.5 Conversion Between External and Internal Representations 166

5.5 Attribute Names 166
 5.5.1 Objectives of Standardizing Attribute Names 166
 5.5.2 Some Guidelines for Attribute Naming 168

5.6 Attribute Generalization 171
 5.6.1 Options and Trade-Offs 171
 5.6.2 Attribute Generalization Resulting from Entity Generalization 172
 5.6.3 Attribute Generalization within Entity Classes 173
 5.6.4 "First Among Equals" 177
 5.6.5 Limits to Attribute Generalization 178

5.7 Summary 180

• • Chapter 6
Primary Keys and Identity 183

6.1 Basic Requirements and Trade-Offs 183

6.2 Basic Technical Criteria 185
 6.2.1 Applicability 185
 6.2.2 Uniqueness 186
 6.2.3 Minimality 188
 6.2.4 Stability 189

6.3 Surrogate Keys 191
 6.3.1 Performance and Programming Issues 191
 6.3.2 Matching Real-World Identifiers 191
 6.3.3 Should Surrogate Keys Be Visible? 192
 6.3.4 Subtypes and Surrogate Keys 193

6.4 Structured Keys 194
 6.4.1 When to Use Structured Keys 196
 6.4.2 Programming and Structured Keys 197
 6.4.3 Performance Issues with Structured Keys 198
 6.4.4 Running Out of Numbers 199
8.3 Roles and Responsibilities 238
8.4 Partitioning Large Projects 240
8.5 Maintaining the Model 242
 8.5.1 Examples of Complex Changes 242
 8.5.2 Managing Change in the Modeling Process 247
8.6 Packaging It Up 248
8.7 Summary 249

• • Chapter 9

The Business Requirements 251

9.1 Purpose of the Requirements Phase 251
9.2 The Business Case 253
9.3 Interviews and Workshops 254
 93.1 Should You Model in Interviews and Workshops? 255
 9.3.2 Interviews with Senior Managers 256
 9.3.3 Interviews with Subject Matter Experts 257
 9.3.4 Facilitated Workshops 257
9.4 Riding the Trucks 258
9.5 Existing Systems and Reverse Engineering 259
9.6 Process Models 261
9.7 Object Class Hierarchies 261
 9.7.1 Classifying Object Classes 263
 9.7.2 A Typical Set of Top-Level Object Classes 265
 9.7.3 Developing an Object Class Hierarchy 267
 9.7.4 Potential Issues 270
 9.7.5 Advantages of the Object Class Hierarchy Technique 270
9.8 Summary 270
Chapter 10. Conceptual Data Modeling 273

10.1 Designing Real Models 273

10.2 Learning from Designers in Other Disciplines 275

10.3 Starting the Modeling 276

10.4 Patterns and Generic Models 277
 10.4.1 Using Patterns 277
 10.4.2 Using a Generic Model 278
 10.4.3 Adapting Generic Models from Other Applications 279
 10.4.4 Developing a Generic Model 282
 10.4.5 When There Is Not a Generic Model 284

10.5 Bottom-Up Modeling 285

10.6 Top-Down Modeling 288

10.7 When the Problem Is Too Complex 288

10.8 Hierarchies, Networks, and Chains 290
 10.8.1 Hierarchies 291
 10.8.2 Networks (Many-to-Many Relationships) 293
 10.8.3 Chains (One-to-One Relationships) 295

10.9 One-to-One Relationships 295
 10.9.1 Distinct Real-World Concepts 296
 10.9.2 Separating Attribute Groups 297
 10.9.3 Transferable One-to-One Relationships 298
 10.9.4 Self-Referencing One-to-One Relationships 299
 10.9.5 Support for Creativity 299

10.10 Developing Entity Class Definitions 300

10.11 Handling Exceptions 301

10.12 The Right Attitude 302
 10.12.1 Being Aware 303
 10.12.2 Being Creative 303
 10.12.3 Analyzing or Designing 303
 10.12.4. Being Brave 304
 10.12.5 Being Understanding and Understood 304

10.13 Evaluating the Model 305

10.14 Direct Review of Data Model Diagrams 306
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.15</td>
<td>Comparison with the Process Model</td>
<td>308</td>
</tr>
<tr>
<td>10.16</td>
<td>Testing the Model with Sample Data</td>
<td>308</td>
</tr>
<tr>
<td>10.17</td>
<td>Prototypes</td>
<td>309</td>
</tr>
<tr>
<td>10.18</td>
<td>The Assertions Approach</td>
<td>309</td>
</tr>
<tr>
<td>10.18.1</td>
<td>Naming Conventions</td>
<td>310</td>
</tr>
<tr>
<td>10.18.2</td>
<td>Rules for Generating Assertions</td>
<td>311</td>
</tr>
<tr>
<td>10.19</td>
<td>Summary</td>
<td>319</td>
</tr>
<tr>
<td></td>
<td>Chapter 11</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>321</td>
</tr>
<tr>
<td>11.2</td>
<td>Overview of the Transformations Required</td>
<td>322</td>
</tr>
<tr>
<td>11.3</td>
<td>Table Specification</td>
<td>325</td>
</tr>
<tr>
<td>11.3.1</td>
<td>The Standard Transformation</td>
<td>325</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Exclusion of Entity Classes from the Database</td>
<td>325</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Classification Entity Classes</td>
<td>325</td>
</tr>
<tr>
<td>11.3.4</td>
<td>Many-to-Many Relationship Implementation</td>
<td>326</td>
</tr>
<tr>
<td>11.3.5</td>
<td>Relationships Involving More Than Two Entity Classes</td>
<td>328</td>
</tr>
<tr>
<td>11.3.6</td>
<td>Supertype/Subtype Implementation</td>
<td>328</td>
</tr>
<tr>
<td>11.4</td>
<td>Basic Column Definition</td>
<td>334</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Attribute Implementation: The Standard Transformation</td>
<td>334</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Category Attribute Implementation</td>
<td>335</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Derivable Attributes</td>
<td>336</td>
</tr>
<tr>
<td>11.4.4</td>
<td>Attributes of Relationships</td>
<td>336</td>
</tr>
<tr>
<td>11.4.5</td>
<td>Complex Attributes</td>
<td>337</td>
</tr>
<tr>
<td>11.4.6</td>
<td>Multivalued Attribute Implementation</td>
<td>337</td>
</tr>
<tr>
<td>11.4.7</td>
<td>Additional Columns</td>
<td>339</td>
</tr>
<tr>
<td>11.4.8</td>
<td>Column Datatypes</td>
<td>340</td>
</tr>
<tr>
<td>11.4.9</td>
<td>Column Nullability</td>
<td>340</td>
</tr>
<tr>
<td>11.5</td>
<td>Primary Key Specification</td>
<td>341</td>
</tr>
<tr>
<td>11.6</td>
<td>Foreign Key Specification</td>
<td>342</td>
</tr>
<tr>
<td>11.6.1</td>
<td>One-to-Many Relationship Implementation</td>
<td>343</td>
</tr>
<tr>
<td>11.6.2</td>
<td>One-to-One Relationship Implementation</td>
<td>346</td>
</tr>
<tr>
<td>11.6.3</td>
<td>Derivable Relationships</td>
<td>347</td>
</tr>
<tr>
<td>11.6.4</td>
<td>Optional Relationships</td>
<td>348</td>
</tr>
</tbody>
</table>
11.6.5 Overlapping Foreign Keys 350
11.6.6 Split Foreign Keys 352

11.7 Table and Column Names 354

11.8 Logical Data Model Notations 355

11.9 Summary 357

Chapter 12

Physical Database Design 359

12.1 Introduction 359

12.2 Inputs to Database Design 361

12.3 Options Available to the Database Designer 362

12.4 Design Decisions Which Do Not Affect Program Logic 363
 12.4.1 Indexes 363
 12.4.2 Data Storage 370
 12.4.3 Memory Usage 372

12.5 Crafting Queries to Run Faster 372
 12.5.1 Locking 373

12.6 Logical Schema Decisions 374
 12.6.1 Alternative Implementation of Relationships 374
 12.6.2 Table Splitting 374
 12.6.3 Table Merging 376
 12.6.4 Duplication 377
 12.6.5 Denormalization 378
 12.6.6 Ranges 379
 12.6.7 Hierarchies 380
 12.6.8 Integer Storage of Dates and Times 382
 12.6.9 Additional Tables 383

12.7 Views 384
 12.7.1 Views of Supertypes and Subtypes 385
 12.7.2 Inclusion of Derived Attributes in Views 385
 12.7.3 Denormalization and Views 385
 12.7.4 Views of Split and Merged Tables 386

12.8 Summary 386
13.1 Introduction 391
13.2 Introduction to the Higher Normal Forms 392
13.3 Boyce-Codd Normal Form 394
13.4 Fourth Normal Form (4NF) and Fifth Normal Form (5NF) 398
13.5 Beyond 5NF: Splitting Tables Based on Candidate Keys 407
13.6 Other Normalization Issues 408
13.7 Advanced Normalization in Perspective 415
13.8 Summary 416
14.1 Introduction 417
14.2 Types of Business Rules 418
14.3 Discovery and Verification of Business Rules 420
14.3.1 Cardinality Rules 420
14.3.2 Other Data Validation Rules 421
14.3.3 Data Derivation Rules 421

14.4 Documentation of Business Rules 422
14.4.1 Documentation in an E-R Diagram 422
14.4.2 Documenting Other Rules 422
14.4.3 Use of Subtypes to Document Rules 424

14.5 Implementing Business Rules 427
14.5.1 Where to Implement Particular Rules 428
14.5.2 Implementation Options: A Detailed Example 433
14.5.3 Implementing Mandatory Relationships 436
14.5.4 Referential Integrity 438
14.5.5 Restricting an Attribute to a Discrete Set of Values 439
14.5.6 Rules Involving Multiple Attributes 442
14.5.7 Recording Data That Supports Rules 442
14.5.8 Rules That May Be Broken 443
14.5.9 Enforcement of Rules Through Primary Key Selection 445

14.6 Rules on Recursive Relationships 446
14.6.1 Types of Rules on Recursive Relationships 447
14.6.2 Documenting Rules on Recursive Relationships 449
14.6.3 Implementing Constraints on Recursive Relationships 449
14.6.4 Analogous Rules in Many-to-Many Relationships 450

14.7 Summary 450

Chapter 15
Time-Dependent Data 451

15.1 The Problem 451
15.2 When Do We Add the Time Dimension? 452
15.3 Audit Trails and Snapshots 452
15.3.1 The Basic Audit Trail Approach 453
15.3.2 Handling Nonnumeric Data 458
15.3.3 The Basic Snapshot Approach 458

15.4 Sequences and Versions 462
15.5 Handling Deletions 463
15.6 Archiving 463
15.7 Modeling Time-Dependent Relationships 464
 15.7.1 One-to-Many Relationships 464
 15.7.2 Many-to-Many Relationships 466
 15.7.3 Self-Referencing Relationships 468

15.8 Date Tables 469

15.9 Temporal Business Rules 469

15.10 Changes to the Data Structure 473

15.11 Putting It into Practice 473

15.12 Summary 474

Chapter 16
Modeling for Data Warehouses and Data Marts 475

16.1 Introduction 475

16.2 Characteristics of Data Warehouses and Data Marts 478
 16.2.1 Data Integration: Working with Existing Databases 478
 16.2.2 Loads Rather Than Updates 478
 16.2.3 Less Predictable Database "Hits" 479
 16.2.4 Complex Queries—Simple Interface 479
 16.2.5 History 480
 16.2.6 Summarization 480

16.3 Quality Criteria for Warehouse and Mart Models 480
 16.3.1 Completeness 480
 16.3.2 Nonredundancy 481
 16.3.3 Enforcement of Business Rules 482
 16.3.4 Data Reusability 482
 16.3.5 Stability and Flexibility 482
 16.3.6 Simplicity and Elegance 483
 16.3.7 Communication Effectiveness 483
 16.3.8 Performance 483

16.4 The Basic Design Principle 483

16.5 Modeling for the Data Warehouse 484
 16.5.1 An Initial Model 484
 16.5.2 Understanding Existing Data 485
 16.5.3 Determining Requirements 485
 16.5.4 Determining Sources and Dealing with Differences 485
 16.5.5 Shaping Data for Data Marts 487
16.6 Modeling for the Data Mart 488
16.6.1 The Basic Challenge 488
16.6.2 Multidimensional Databases, Stars and Snowflakes 488
16.6.3 Modeling Time-Dependent Data 494

16.7 Summary 496

• • • Chapter 17

Enterprise Data Models and Data Management 499

17.1 Introduction 499

17.2 Data Management 500
17.2.1 Problems of Data Mismanagement 500
17.2.2 Managing Data as a Shared Resource 501
17.2.3 The Evolution of Data Management 501

17.3 Classification of Existing Data 503

17.4 A Target for Planning 504

17.5 A Context for Specifying New Databases 506
17.5.1 Determining Scope and Interfaces 506
17.5.2 Incorporating the Enterprise Data Model in the Development Life Cycle 506

17.6 Guidance for Database Design 508

17.7 Input to Business Planning 508

17.8 Specification of an Enterprise Database 509

17.9 Characteristics of Enterprise Data Models 511

17.10 Developing an Enterprise Data Model 512
17.10.1 The Development Cycle 512
17.10.2 Partitioning the Task 513
17.10.3 Inputs to the Task 514
17.10.4 Expertise Requirements 515
17.10.5 External Standards 515

17.11 Choice, Creativity, and Enterprise Data Models 516

17.12 Summary 517

Further Reading 519