Contents

Foreword vii
 by Paul Menchini
Foreword to the First Edition ix
 by Paul Menchini
Preface xix

Fundamental Concepts
1.1 Modeling Digital Systems 2
1.2 Domains and Levels of Modeling 4
1.3 Modeling Languages 7
1.4 VHDL Modeling Concepts 8
 Elements of Behavior 9
 Elements of Structure 10
 Mixed Structural and Behavioral Models 12
 Test Benches 13
 Analysis, Elaboration and Execution 14
1.5 Learning a New Language: Lexical Elements and Syntax 16
 Lexical Elements 17
 Syntax Descriptions 23
Exercises 26

Scalar Data Types and Operations 29
2.1 Constants and Variables 30
 Constant and Variable Declarations 30
 Variable Assignment 32
2.2 Scalar Types 32
 Type Declarations 33
Contents

2.3 Type Classification 46
 Subtypes 46
 Type Qualification 48
 Type Conversion 49

2.4 Attributes of Scalar Types 49
2.5 Expressions and Operators 52
Exercises 54

Sequential Statements 57
3.1 If Statements 58
3.2 Case Statements 61
3.3 Null Statements 66
3.4 Loop Statements 67
 Exit Statements 68
 Next Statements 71
 While Loops 72
 For Loops 74
 Summary of Loop Statements 76

3.5 Assertion and Report Statements 77
Exercises 83

Composite Data Types and Operations 85
4.1 Arrays 86
 Multidimensional Arrays 88
 Array Aggregates 89
 Array Attributes 92
4.2 Unconstrained Array Types 94
 Strings 95
 Bit Vectors 95
 Standard-Logic Arrays 96
 String and Bit-String Literals 96
 Unconstrained Array Ports 97
4.3 Array Operations and Referencing 98
 Array Slices 100
 Array Type Conversions 101
4.4 Records 102
 Record Aggregates 104
Exercises 105
<table>
<thead>
<tr>
<th>Contents</th>
<th>107</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Modeling Constructs</td>
<td></td>
</tr>
<tr>
<td>5.1 Entity Declarations</td>
<td>108</td>
</tr>
<tr>
<td>5.2 Architecture Bodies</td>
<td>110</td>
</tr>
<tr>
<td>Concurrent Statements</td>
<td>111</td>
</tr>
<tr>
<td>Signal Declarations</td>
<td>111</td>
</tr>
<tr>
<td>5.3 Behavioral Descriptions</td>
<td>113</td>
</tr>
<tr>
<td>Signal Assignment</td>
<td>113</td>
</tr>
<tr>
<td>Signal Attributes</td>
<td>115</td>
</tr>
<tr>
<td>Wait Statements</td>
<td>118</td>
</tr>
<tr>
<td>Delta Delays</td>
<td>121</td>
</tr>
<tr>
<td>Transport and Inertial Delay Mechanisms</td>
<td>124</td>
</tr>
<tr>
<td>Process Statements</td>
<td>130</td>
</tr>
<tr>
<td>Concurrent Signal Assignment Statements</td>
<td>131</td>
</tr>
<tr>
<td>Concurrent Assertion Statements</td>
<td>138</td>
</tr>
<tr>
<td>Entities and Passive Processes</td>
<td>139</td>
</tr>
<tr>
<td>5.4 Structural Descriptions</td>
<td>140</td>
</tr>
<tr>
<td>Component Instantiation and Port Maps</td>
<td>141</td>
</tr>
<tr>
<td>5.5 Design Processing</td>
<td>149</td>
</tr>
<tr>
<td>Analysis</td>
<td>149</td>
</tr>
<tr>
<td>Design Libraries, LibraryClauses and UseClauses</td>
<td>151</td>
</tr>
<tr>
<td>Elaboration</td>
<td>153</td>
</tr>
<tr>
<td>Execution</td>
<td>156</td>
</tr>
<tr>
<td>Exercises</td>
<td>157</td>
</tr>
<tr>
<td>Case Study: A Pipelined Multiplier Accumulator</td>
<td>167</td>
</tr>
<tr>
<td>6.1 Algorithm Outline</td>
<td>168</td>
</tr>
<tr>
<td>MAC Entity Declaration</td>
<td>170</td>
</tr>
<tr>
<td>6.2 A Behavioral Model</td>
<td>171</td>
</tr>
<tr>
<td>Testing the Behavioral Model</td>
<td>176</td>
</tr>
<tr>
<td>6.3 A Register-Transfer-Level Model</td>
<td>179</td>
</tr>
<tr>
<td>Modules in the Register-Transfer-Level Model</td>
<td>181</td>
</tr>
<tr>
<td>The Register-Transfer-Level Architecture Body</td>
<td>188</td>
</tr>
<tr>
<td>Testing the Register-Transfer-Level Model</td>
<td>191</td>
</tr>
<tr>
<td>Exercises</td>
<td>193</td>
</tr>
<tr>
<td>Subprograms</td>
<td>195</td>
</tr>
<tr>
<td>7.1 Procedures</td>
<td>196</td>
</tr>
<tr>
<td>Return Statement in a Procedure</td>
<td>201</td>
</tr>
<tr>
<td>7.2 Procedure Parameters</td>
<td>202</td>
</tr>
<tr>
<td>Signal Parameters</td>
<td>206</td>
</tr>
<tr>
<td>Default Values</td>
<td>209</td>
</tr>
<tr>
<td>Unconstrained Array Parameters</td>
<td>210</td>
</tr>
<tr>
<td>Summary of Procedure Parameters</td>
<td>212</td>
</tr>
<tr>
<td>7.3 Concurrent Procedure Call Statements</td>
<td>213</td>
</tr>
</tbody>
</table>
7.4 Functions 215
 Functional Modeling 218
 Pure and Impure Functions 218
 The Function Now 219

7.5 Overloading 220
 Overloading Operator Symbols 222

7.6 Visibility of Declarations 223
Exercises 227

Packages and Use Clauses 231
8.1 Package Declarations 232
 Subprograms in Package Declarations 236
 Constants in Package Declarations 237
8.2 Package Bodies 239
8.3 Use Clauses 241
8.4 The Predefined Package Standard 243
8.5 IEEE Standard Packages 244
 Std_Logic_1164 Multivalued Logic System 245
 Standard VHDL Synthesis Packages 246
 Standard VHDL Mathematical Packages 250
Exercises 255

Aliases 257
9.1 Aliases for Data Objects 258
9.2 Aliases for Non-Data Items 261
Exercises 264

Case Study: A Bit-Vector Arithmetic Package 267
10.1 The Package Interface 268
10.2 The Package Body 271
10.3 An ALU Using the Arithmetic Package 280
Exercises 282

Resolved Signals 285
11.1 Basic Resolved Signals 286
 Composite Resolved Subtypes 290
 Summary of Resolved Subtypes 294
11.2 IEEE Std_Logic_1164 Resolved Subtypes 294
11.3 Resolved Signals and Ports 297
 Resolved Ports 298
 Driving Value Attribute 300
11.4 Resolved Signal Parameters 300
Exercises 302
Contents

Generic Constants

12.1 Parameterizing Behavior 310
12.2 Parameterizing Structure 313
Exercises 315

Components and Configurations

13.1 Components 318
 Component Declarations 318
 Component Instantiation 319
 Packaging Components 321
13.2 Configuring Component Instances 322
 Basic Configuration Declarations 323
 Configuring Multiple Levels of Hierarchy 325
 Direct Instantiation of Configured Entities 328
 Generic and Port Maps in Configurations 329
 Deferred Component Binding 335
13.3 Configuration Specifications 337
 Incremental Binding 338
Exercises 344

Generate Statements

14.1 Generating Iterative Structures 350
14.2 Conditionally Generating Structures 355
 Recursive Structures 359
14.3 Configuration of Generate Statements 362
Exercises 367

Case Study: The DLX Computer System

15.1 Overview of the DLX CPU 374
 DLX Registers 374
 DLX Instruction Set 375
 DLX External Interface 379
15.2 A Behavioral Model 382
 The DLX Types Package 382
 The DLX Entity Declaration 383
 The DLX Instruction Set Package 384
 The DLX Behavioral Architecture Body 392
15.3 Testing the Behavioral Model 407
 The Test-Bench Clock Generator 408
 The Test-Bench Memory 408
 The Test-Bench Architecture Body and Configuration 413
15.4 A Register-Transfer-Level Model 416
 The Arithmetic and Logic Unit 417
 The Registers 421
The Register File 425
The Multiplexer 426
The Extenders 427
The Architecture Body 428
The Controller 434
The Configuration Declaration 450

15.5 Testing the Register-Transfer-Level Model 452
Exercises 456

Guards and Blocks 459
16.1 Guarded Signals and Disconnection 460
The Driving Attribute 464
Guarded Ports 465
Guarded Signal Parameters 467
16.2 Blocks and Guarded Signal Assignment 469
Explicit Guard Signals 472
Disconnection Specifications 474
16.3 Using Blocks for Structural Modularity 475
Generics and Ports in Blocks 478
Configuring Designs with Blocks 479
Exercises 482

Access Types and Abstract Data Types 487
17.1 Access Types 488
Access Type Declarations and Allocators 488
Assignment and Equality of Access Values 490
Access Types for Records and Arrays 492
17.2 Linked Data Structures 494
Deallocation and Storage Management 498
17.3 Abstract Data Types Using Packages 499
Container ADTs 504
Exercises 512

Files and Input/Output 515
18.1 Files 516
File Declarations 516
Reading from Files 517
Writing to Files 520
Files Declared in Subprograms 523
Explicit Open and Close Operations 524
File Parameters in Subprograms 527
Portability of Files 529
18.2 The Package Textio 529
Textio Read Operations 531
Textio Write Operations 541
Contents

Reading and Writing User-Defined Types 543
Exercises 544

Case Study: Queuing Networks 549
19-1 Queuing Network Concepts 550
19.2 Queuing Network Modules 551
 Random Number Generator 551
 A Package for Token and Arc Types 555
 The Token Source Module 557
 The Token Sink Module 561
 The Queue Module 563
 The Token Server Module 569
 The Fork Module 571
 The Join Module 575
19-3 A Queuing Network for a Disk System 578
Exercises 584

Attributes and Groups 585
20.1 Predefined Attributes 586
 Attributes of Scalar Types 586
 Attributes of Array Types and Objects 587
 Attributes of Signals 587
 Attributes of Named Items 588
20.2 User-Defined Attributes 595
 Attribute Declarations 596
 Attribute Specifications 596
 The Attribute Foreign 606
20.3 Groups 608
Exercises 611

Miscellaneous Topics 615
21.1 Buffer and Linkage Ports 616
21.2 Conversion Functions in Association Lists 618
21.3 Postponed Processes 623
21.4 Shared Variables 626
Exercises 636

A Synthesis 639
A.1 Use of Data Types 640
A.2 Interpretation of Standard Logic Values 642
A.3 Modeling Combinatorial Logic 643
A.4 Modeling Sequential Logic 644
A.5 VHDL Modeling Restrictions 650
The Predefined Package Standard

IEEE Standard Packages
C.I Std_Logic_1164 Multivalue Logic System 659
C.2 Standard 1076.3 VHDL Synthesis Packages 662
C.3 Standard 1076.2 VHDL Mathematical Packages 665

Related Standards
D.I IEEE VHDL Standards 671
D.2 Other Design Automation Standards 677

VHDL Syntax
E.I Design File 685
E.2 Library Unit Declarations 685
E.3 Declarations and Specifications 686
E.4 Type Definitions 689
E.5 Concurrent Statements 690
E.6 Sequential Statements 692
E.7 Interfaces and Associations 693
E.8 Expressions 694

Differences among VHDL-87, VHDL-93 and VHDL-2001
F.I Lexical Differences 697
F.2 Syntactic Differences 698
F.3 Semantic Differences 699
F.4 Differences in the Standard Environment 700
F.5 VHDL-93 Facilities Not in VHDL-87 701
F.6 VHDL-2001 Facilities Not in VHDL-87 or VHDL-93 701
F.7 Features under Consideration for Removal 701

Answers to Exercises 703

References 723

Index 725