Hartmutlurgens DietmarSaupe

Chaos and Fractals

Mew Frontiers of Science

With 686 illustrations, 40 in color

Contents

Pr	Preface				
Aι	Authors X Foreword				
Fo					
	Mitchell J. Feigenbaum				
In	oduction: Causality Principle, Deterministic Laws and Chaos	9			
1	The Backbone of Fractals: Feedback and the Iterator	15			
	 1.1 The Principle of Feedback. 1.2 The Multiple Reduction Copy Machine. 1.3 Basic Types of Feedback Processes. 1.4 The Parable of the Parabola — Or: Don't Trust Your Computer. 1.5 Chaos Wipes Out Every Computer. 1.6 Program of the Chapter: Graphical Iteration. 	17 23 27 37 49 60			
2	Classical Fractals and Self-Similarity 2.1 The Cantor Set 2.2 The Sierpinski Gasket and Carpet. 2.3 The Pascal Triangle. 2.4 The Koch Curve. 2.5 Space-Filling Curves. 2.6 Fractals and the Problem of Dimension. 2.7 The Universality of the Sierpinski Carpet. 2.8 Julia Sets. 2.9 Pythagorean Trees. 2.10 Program of the Chapter: Sierpinski Gasket by Binary Addresses.	63 67 78 82 89 94 106 112 122 126 132			
3	Limits and Self-Similarity 3.1 Similarity and Scaling. 3.2 Geometric Series and the Koch Curve. 3.3 Corner the New from Several Sides: Pi and the Square Root of Two. 3.4 Fractals as Solution of Equations. 3.5 Program of the Chapter: The Koch Curve.	135 138 147 153 168 179			

4	Len	gth, Area and Dimension: Measuring Complexity and Scaling Properties	183
	4.1	Finite and Infinite Length of Spirals	.185
	4.2	Measuring Fractal Curves and Power Laws	.192
	4.3	Fractal Dimension	.202
	4.4	The Box-Counting Dimension	.212
	4.5	Borderline Fractals: Devil's Staircase and Peano Curve	.220
	4.6	Program of the Chapter: The Cantor Set and Devil's Staircase.	.226
	Enc	oding Images by Simple Transformations	229
	5.1	The Multiple Reduction Copy Machine Metaphor	.231
	5.2	Composing Simple Transformations	.234
	5.3	Relatives of the Sierpinski Gasket	.244
	5.4	Classical Fractals by IFSs.	.252
	5.5	Image Encoding by IFSs.	.258
	5.6	Foundation of IFS: The Contraction Mapping Principle	.263
	5.7	Choosing the Right Metric.	274
	5.8	Composing Self-Similar Images	2/8
	5.9	Breaking Self-Similarity and Self-Affinity or, Networking with MRCMs	283
	5.10	Program of the Chapter: Iterating the MIRCM	.293
6	The	Chaos Game: How Randomness Creates Deterministic Shapes	297
	6.1	The Fortune Wheel Reduction Copy Machine	.300
	6.2	Addresses: Analysis of the Chaos Game.	.307
	6.3	Tuning the Fortune Wheel.	.321
	6.4	Random Number Generator Pitfall.	.333
	6.5	Adaptive Cut Methods.	.341
	6.6	Program of the Chapter: Chaos Game for the Fern	.350
7	Rec	ursive Structures: Growing of Fractals and Plants	353
	7.1	L-Systems: A Language For Modeling Growth	.357
	7.2	Growing Classical Fractals with MRCMs.	.364
	7.3	Turtle Graphics: Graphical Interpretation of L-Systems	.376
	7.4	Growing Classical Fractals with L-Systems.	.380
	7.5	Growing Fractals with Networked MRCMs.	.392
	7.6	L-System Trees and Bushes.	397
	7.7	Program of the Chapter: L-systems.	. 402
8	Pase	cal's Triangle: Cellular Automata and Attractors	407
	8.1	Cellular Automata	412
	8.2	Binomial Coefficients and Divisibility.	. 423
	8.3	IFS: From Local Divisibility to Global Geometry	. 434
	8.4	HIFS and Divisibility by Prime Powers	. 442
	8.5	Catalytic Converters or how many Cells are Black?	. 450
	8.6	Program of the Chapter: Cellular Automata	. 454

XIV

TabJe	of	Contents
TabJe	of	Contents

9 Irre	egular Shapes: Randomness in Fractal Constructions	457
9.1	Randomizing Deterministic Fractals.	.459
9.2	Percolation: Fractals and Fires in Random Forests	463
9.3	Random Fractals in a Laboratory Experiment	475
9.4	Simulation of Brownian Motion	481
9.5	Scaling Laws and Fractional Brownian Motion	491
9.6	Fractal Landscapes.	497
9.7	Program of the Chapter: Random Midpoint Displacement.	503
10 Det	erministic Chaos: Sensitivity, Mixing, and Periodic Points	507
10.1	The Signs of Chaos: Sensitivity	.509
10.2	2 The Signs of Chaos: Mixing and Periodic Points.	.520
10.3	B Ergodic Orbits and Histograms.	.525
10.4	Paradigm of Chaos: The Kneading of Dough	.536
10.5	Analysis of Chaos: Sensitivity, Mixing, and Periodic Points	.549
10.6	6 Chaos for the Quadratic Iterator.	560
10.7	Mixing and Dense Periodic Points Imply Sensitivity.	.569
10.8	Numerics of Chaos: Worth the Trouble or Not?	575
10.9	Program of the Chapter: Time Series and Error Development.	.581
11 Or	ler and Chaos: Period-Doubling and its Chaotic Mirror	585
11.1	The First Step From Order to Chaos: Stable Fixed Points	.592
11.2	The Next Step From Order to Chaos: The Period Doubling Scenario	.603
11.3	The Feigenbaum Point: Entrance to Chaos	.619
11.4	From Chaos to Order: a Mirror Image.	.628
11.5	Intermittency and Crises: The Backdoors to Chaos	.640
11.6	Program of the Chapter: Final State Diagram.	.651
12 Str	ange Attractors: The Locus of Chaos	655
12.1	A Discrete Dynamical System in Two Dimensions: Henon's Attractor.	.659
12.2	Continuous Dynamical Systems: Differential Equations	.678
12.3	B The Rossler Attractor.	.686
12.4	The Lorenz Attractor.	<u>.</u> 697
12.5	Quantitative Characterization of Strange Chaotic Attractors: Ljapunov Exponents	709
12.6	Quantitative Characterization of Strange Chaotic Attractors: Dimensions	.721
12.7	The Reconstruction of Strange Attractors	.745
12.8	Fractal Basin Boundaries	757
12.9	Program of the Chapter: Rossler Attractor.	.766
13 Juli	a Sets: Fractal Basin Boundaries	769
13.1	Julia Sets as Basin Boundaries	771
13.2	Complex Numbers — A Short Introduction	776
13.3	Complex Square Roots and Quadratic Equations	. 784
13.4	Prisoners versus Escapees.	. 789
13.5	Equipotentials and Field Lines for Julia Sets	800
13.6	Binary Decomposition, Field Lines and Dynamics	812

Table of Contents

	13.7	Chaos Game and Self-Similarity for Julia Sets.	.820				
	13.8	The Critical Point and Julia Sets as Cantor Sets.	.826				
	13.9	Quaternion Julia Sets	.837				
	13.10	Program of the Chapter: Julia Sets.	.839				
14	The I	Mandelbrot Set: Ordering the Julia Sets	841				
	14.1	From the Structural Dichotomy to the Binary Decomposition	.843				
	14.2	The Mandelbrot Set — A Road Map for Julia Sets.	855				
	14.3	The Mandelbrot Set as a Table of Content.	.878				
	14.4	Program of the Chapter: The Mandelbrot Set	.896				
A	A Dis	scussion of Fractal Image Compression	903				
	Yuval	Fisher					
	A.I	Self-Similarity in Images	906				
	A.2	A Special MRCM	908				
	A.3	Encoding Images	.912				
	A.4	Ways to Partition Images.	.914				
	A.5	Implementation Notes	.917				
B	Multi	fractal Measures	921				
	Carl .	I. G. Evertsz and Benoit B. Mandelbrot					
	B.I	Introduction	.922				
	B.2	The Binomial and Multinomial Measures.	.927				
	B.3	Methods for Estimating the Function $f(a)$ from Data	.938				
	B.4	Probabilistic Roots of Multifractals. Role of/(a) in Large Deviation-Theory	944				
	B.5	Some Applications, and Advanced Multifractals.	952				
Bibliography							
Ind	ndex 97						

XVI