PART 1 INTRODUCTION

Chapter 1 Power Electronic Systems
1-1 Introduction 3
1-2 Power Electronics versus Linear Electronics 4
1-3 Scope and Applications 7
1-4 Classification of Power Processors and Converters 12
1-5 About the Text 12
1-6 Interdisciplinary Nature of Power Electronics 13
1-7 Convention of Symbols Used 14
 Problems 14
 References 15

Chapter 2 Overview of Power Semiconductor Switches
2-1 Introduction 16
2-2 Diodes 16
2-3 Thyristors 18
2-4 Desired Characteristics in Controllable Switches 20
2-5 Bipolar Junction Transistors and Monolithic Darlington 24
2-6 Metal-Oxide-Semiconductor Field Effect Transistors 25
2-7 Gate-Turn-Off Thyristors 26
2-8 Insulated Gate Bipolar Transistors 27
2-9 MOS-Controlled Thyristors 29
2-10 Comparison of Controllable Switches 29
2-11 Drive and Snubber Circuits 30
2-12 Justification for Using Idealized Device Characteristics 31
 Summary 32
 Problems 32
 References 32

Chapter 3 Review of Basic Electrical and Magnetic Circuit Concepts
3-1 Introduction 33
3-2 Electric Circuits 33
3-3 Magnetic Circuits 46
 Summary 57
 Problems 58
 References 60
Chapter 11 Power Conditioners and Uninterruptible Power Supplies

11-1 Introduction 354
11-2 Power Line Disturbances 354
11-3 Power Conditioners 357
11-4 Uninterruptible Power Supplies (UPSs) 358

Summary 363
Problems 363
References 364

PART 4 MOTOR DRIVE APPLICATIONS

Chapter 12 Introduction to Motor Drives

12-1 Introduction 367
12-2 Criteria for Selecting Drive Components 368

Summary 375
Problems 376
References 376

Chapter 13 dc Motor Drives

13-1 Introduction 377
13-2 Equivalent Circuit of dc Motors 377
13-3 Permanent-Magnet dc Motors 380
13-4 dc Motors with a Separately Excited Field Winding 381
13-5 Effect of Armature Current Waveform 382
13-6 dc Servo Drives 383
13-7 Adjustable-Speed dc Drives 391

Summary 396
Problems 396
References 398

Chapter 14 Induction Motor Drives

14-1 Introduction 399
14-2 Basic Principles of Induction Motor Operation 400
14-3 Induction Motor Characteristics at Rated (Lme) Frequency and Rated Voltage 405
14-4 Speed Control by Varying Stator Frequency and Voltage 406
14-5 Impact of Nonsinusoidal Excitation on Induction Motors 415
14-6 Variable-Frequency Converter Classifications 418
14-7 Variable-Frequency PWM-VSI Drives 419
14-8 Variable-Frequency Square-Wave VSI Drives 425
14-9 Variable-Frequency CSI Drives 426
14-10 Comparison of Variable-Frequency Drives 427
Chapter 15 Synchronous Motor Drives 435
15-1 Introduction 435
15-2 Basic Principles of Synchronous Motor Operation 435
15-3 Synchronous Servomotor Drives with Sinusoidal Waveforms 439
15-4 Synchronous Servomotor Drives with Trapezoidal Waveforms 440
15-5 Load-Commutated Inverter Drives 442
15-6 Cycloconverters 445
 Summary 445
 Problems 446
 References 447

PART 5 OTHER APPLICATIONS 449
Chapter 16 Residential and Industrial Applications 451
16-1 Introduction 451
16-2 Residential Applications 451
16-3 Industrial Applications 455
 Summary 459
 Problems 459
 References 459

Chapter 17 Electric Utility Applications 460
17-1 Introduction 460
17-2 High-voltage dc Transmission 460
17-3 Static var Compensators 471
17-4 Interconnection of Renewable Energy Sources and Energy Storage Systems to the Utility Grid 475
17-5 Active Filters 480
 Summary 480
 Problems 481
 References 482

Chapter 18 Optimizing the Utility Interface with Power Electronic Systems 483
18-1 Introduction 483
18-2 Generation of Current Harmonics 484
18-3 Current Harmonics and Power Factor 485
18-4 Harmonic Standards and Recommended Practices 485
18-5 Need for Improved Utility Interface 487
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-6</td>
<td>Improved Single-Phase Utility Interface</td>
<td>488</td>
</tr>
<tr>
<td>18-7</td>
<td>Improved Three-Phase Utility Interface</td>
<td>498</td>
</tr>
<tr>
<td>18-8</td>
<td>Electromagnetic Interference</td>
<td>500</td>
</tr>
</tbody>
</table>

Summary 502

Problems 503

References 503

PART 6 SEMICONDUCTOR DEVICES 505

Chapter 19 Basic Semiconductor Physics 507

19-1 Introduction 507
19-2 Conduction Processes in Semiconductors 507
19-3 pn Junctions 513
19-4 Charge Control Description of p/i-Junction Operation 518
19-5 Avalanche Breakdown 520

Summary 522

Problems 522

References 523

Chapter 20 Power Diodes 524

20-1 Introduction 524
20-2 Basic Structure and $I-I$ Characteristics 524
20-3 Breakdown Voltage Considerations 526
20-4 On-State Losses 531
20-5 Switching Characteristics 535
20-6 Schottky Diodes 539

Summary 543

Problems 543

References 545

Chapter 21 Bipolar Junction Transistors 546

21-1 Introduction 546
21-2 Vertical Power Transistor Structures 546
21-3 $I-I$ Characteristics 548
21-4 Physics of BJT Operation 550
21-5 Switching Characteristics 556
21-6 Breakdown Voltages 562
21-7 Second Breakdown 563
21-8 On-State Losses 565
21-9 Safe Operating Areas 567

Summary 568

Problems 569

References 570

Chapter 22 Power MOSFETs 571

22-1 Introduction 571
22-2 Basic Structure 571
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>I-V Characteristics</td>
<td>574</td>
</tr>
<tr>
<td>22-4</td>
<td>Physics of Device Operation</td>
<td>576</td>
</tr>
<tr>
<td>22-5</td>
<td>Switching Characteristics</td>
<td>581</td>
</tr>
<tr>
<td>22-6</td>
<td>Operating Limitations and Safe Operating Areas</td>
<td>587</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>593</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>594</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>595</td>
</tr>
<tr>
<td></td>
<td>Chapter 23 Thyristors</td>
<td>596</td>
</tr>
<tr>
<td>23-1</td>
<td>Introduction</td>
<td>596</td>
</tr>
<tr>
<td>23-2</td>
<td>Basic Structure</td>
<td>596</td>
</tr>
<tr>
<td>23-3</td>
<td>I-V Characteristics</td>
<td>597</td>
</tr>
<tr>
<td>23-4</td>
<td>Physics of Device Operation</td>
<td>599</td>
</tr>
<tr>
<td>23-5</td>
<td>Switching Characteristics</td>
<td>603</td>
</tr>
<tr>
<td>23-6</td>
<td>Methods of Improving di/dt and dv/dt Ratings</td>
<td>608</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>610</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>611</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>612</td>
</tr>
<tr>
<td></td>
<td>Chapter 24 Gate Turn-Off Thyristors</td>
<td>613</td>
</tr>
<tr>
<td>24-1</td>
<td>Introduction</td>
<td>613</td>
</tr>
<tr>
<td>24-2</td>
<td>Basic Structure and I-V Characteristics</td>
<td>613</td>
</tr>
<tr>
<td>24-3</td>
<td>Physics of Turn-Off Operation</td>
<td>614</td>
</tr>
<tr>
<td>24-4</td>
<td>GTO Switching Characteristics</td>
<td>616</td>
</tr>
<tr>
<td>24-5</td>
<td>Overcurrent Protection of GTOs</td>
<td>623</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>624</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>624</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>Chapter 25 Insulated Gate Bipolar Transistors</td>
<td>626</td>
</tr>
<tr>
<td>25-1</td>
<td>Introduction</td>
<td>626</td>
</tr>
<tr>
<td>25-2</td>
<td>Basic Structure</td>
<td>626</td>
</tr>
<tr>
<td>25-3</td>
<td>I-V Characteristics</td>
<td>628</td>
</tr>
<tr>
<td>25-4</td>
<td>Physics of Device Operation</td>
<td>629</td>
</tr>
<tr>
<td>25-5</td>
<td>Latchup in IGBTs</td>
<td>631</td>
</tr>
<tr>
<td>25-6</td>
<td>Switching Characteristics</td>
<td>634</td>
</tr>
<tr>
<td>25-7</td>
<td>Device Limits and SOAs</td>
<td>637</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>639</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>639</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>Chapter 26 Emerging Devices and Circuits</td>
<td>641</td>
</tr>
<tr>
<td>26-1</td>
<td>Introduction</td>
<td>641</td>
</tr>
<tr>
<td>26-2</td>
<td>Power Junction Field Effect Transistors</td>
<td>641</td>
</tr>
<tr>
<td>26-3</td>
<td>Field-Controlled Thyristor</td>
<td>646</td>
</tr>
<tr>
<td>26-4</td>
<td>JFET-Based Devices versus Other Power Devices</td>
<td>648</td>
</tr>
<tr>
<td>26-5</td>
<td>MOS-Controlled Thyristors</td>
<td>649</td>
</tr>
</tbody>
</table>
PART 7 PRACTICAL CONVERTER DESIGN CONSIDERATIONS

Chapter 27 Snubber Circuits

27-1 Function and Types of Snubber Circuits 669
27-2 Diode Snubbers 670
27-3 Snubber Circuits for Thyristors 678
27-4 Need for Snubbers with Transistors 680
27-5 Turn-Off Snubber 682
27-6 Overvoltage Snubber 686
27-7 Turn-On Snubber 688
27-8 Snubbers for Bridge Circuit Configurations 691
27-9 GTO Snubber Considerations 692

Summary 693
Problems 694
References 695

Chapter 28 Gate and Base Drive Circuits

28-1 Preliminary Design Considerations 696
28-2 de-Coupled Drive Circuits 697
28-3 Electrically Isolated Drive Circuits 703
28-4 Cascode-Connected Drive Circuits 710
28-5 Thyristor Drive Circuits 712
28-6 Power Device Protection in Drive Circuits 717
28-7 Circuit Layout Considerations 722

Summary 728
Problems 729
References 729

Chapter 29 Component Temperature Control and Heat Sinks

29-1 Control of Semiconductor Device Temperatures 730
29-2 Heat Transfer by Conduction 731
29-3 Heat Sinks 737
29-4 Heat Transfer by Radiation and Convection 739

Summary 742
Problems 743
References 743

Chapter 30 Design of Magnetic Components

30-1 Magnetic Materials and Cores 744
30-2 Copper Windings 752